Method and apparatus for measuring physical properties of...

Measuring and testing – Specimen stress or strain – or testing by stress or strain... – By loading of specimen

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S819000, C073S037000

Reexamination Certificate

active

06718832

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method and apparatus for measuring physical properties of a sample of matter, including the mass, volume, density, and bulk modulus. More particularly, the invention relates to a method and apparatus which automatically measures a stress/strain relationship of compressible material.
BACKGROUND OF THE INVENTION
Several physical properties of matter can be determined from measurements of sample mass, volume, and changes in volume with respect to the specific environment in which the measurements are conducted. For instance, the density of matter may be determined from the mass and volume, as will be briefly described below. Under other testing conditions it is also possible to measure the bulk modulus, or compressibility, of a material by employing some of the same measurement methods.
The density of a substance is expressed as a ratio of mass m to volume V, or m/V. This is a physical property of a material which relates to composition, level of impurities, and mixtures, and can be an indicator of hidden features such as voids. In the case of compressible media, such as closed-pore solids, the bulk density is a function of hydrostatic pressure, since the volume changes but the mass remains constant.
There exist two popular methods for determining the density of a solid: (1) by comparison of the sample density with the densities of substances of known value, usually by hydrostatic weighing in two different fluids of known and substantially different density (Archimedes principle), and (2) by the independent measurement of mass and volume of the sample.
Considering the first method, the weight of an object is measured in two liquids having significantly different densities. The measured weight, also referred to herein as apparent weight, is reduced from the true weight due to buoyancy forces acting on the object. Thus, the apparent weight is the true weight minus the buoyancy force, where the buoyancy force is equal to the weight of the liquid displaced by the object. When in the higher density liquid, the buoyancy force acting on the object is greater, and the apparent weight of the object is less. The sensitivity of the method ultimately relies on the range in available liquid densities. In one method of using hydrostatic weighing techniques, one measures the apparent weight of an object in alcohol and then in water, where the alcohol and the water have densities of 0.791 and 1.0 g/cc, respectively. It is also common practice to weigh the object in air and then in water or alcohol, thus using air as the first medium. In that case it is common practice to assume the weight in air to be the “true weight” of the object. The specific reasons for using a liquid as one of the mediums in this technique are (i) to obtain a large difference in density between the two fluids, and (ii) to increase the effect of buoyancy forces.
For very accurate measurement of density, there are several experimental problems which are typically ascribed to the hydrostatic weighing method using two liquids. First, the method suffers from the necessity of weighing an object in liquid. Strictly as a practical matter, this requires suspending the object via a tether or thin wire in the liquids. Second, related to the first, is the fact that surface tension forces affect the measurement as the liquid meniscus either pulls the tether down into the liquid or pushes it up into the adjacent gas (typically air), depending on whether the liquid wets the tether easily. Third, the density of the liquid is affected by dissolved gases in the liquid. Since the effect of trapped gas is to change the actual density of the liquid, efforts must be made to eliminate the trapped gas. Fourth, results will vary due to bubbles of trapped gas on irregular sample surfaces of the object. The bubbles that cling due to surface tension displace liquid and affect the measured buoyancy forces.
The second common approach to determine density requires independent determination of both the mass and the volume. One measures the mass of the body using conventional state-of-the-art balances common to most laboratories. Commercial devices exist for performing this step to very high precision and accuracy. The volume is determined independently. If the sample is of a uniform geometry, it may be possible to calculate the specimen volume based on measurable dimensions. In the more general case where samples are of irregular shape, the volume is determined by a method commonly referred to as pycnometry. For reasonably sized samples on the order of 0.5 cubic centimeters and larger, commercial pycnometers are available for determining volume to 0.02%. Pycnometers typically consist of two chambers connected by means of a pathway for a gas to move and a valve which can isolate the two chambers. The exact volume of one of the chambers must be known apriori. The second chamber is of arbitrary, but similar size. The first chamber, of known volume, is pressurized using a gas such as helium to a predetermined pressure. The second chamber is initially empty and is evacuated by means of a vacuum pump. By means of valves, the two chambers are then isolated from the gas source and from the vacuum pump leaving the first chamber at an elevated pressure with helium and the second chamber under vacuum. The valve in the passageway connecting the two chambers is then opened and the pressurized gas is allowed to expand from the first chamber into the second chamber, and the pressure achieves a new equilibrium value by virtue of the increased volume occupied by the gas. It is a straightforward calculation to determine the volume of the unknown chamber using the initial helium pressure in the first chamber, the volume of the first chamber, and the final pressure. The steps are then repeated with the sample of interest being placed into the second chamber. The newly calculated volume of the second chamber represents the remaining volume of the second chamber not occupied by the sample.
Although the field of pycnometry is well established for accurately determining the volumes of solids of reasonable sizes, the state-of-the-art is limited by several factors in attempts to extrapolate to smaller samples. There are many industries where large samples are not always available. Some specific applications would include high-temperature superconducting wires, samples pertaining to the study of irradiation, and porous membranes used for delivering and mixing gases, such as in the fuel cell applications. The volume of such samples is often much smaller than that required by pycnometers. For accurate measurements, the sample should occupy a significant fraction of the chamber volume, e.g. 50-60% of a 1 cubic centimeter chamber.
There are several other limitations to the pycnometry method for determining density. First, if safeguards are not included, temperature variations of the gas due to room temperature fluctuations may affect the pressure, and hence the density, of the pressurized gas. Second, the gas-comparison pycnometer described above does not work if there are any leaks in the system. The ability of the technique to work depends strongly upon the number of gas atoms remaining constant before and after the gas expands into the second chamber. Third, the chamber door, when closed, must close in a repeatable fashion such that the volume of the chamber is exactly the same every time the door is opened and closed. Fourth, the mechanism requires a vacuum pump. Fifth, the true volume of the pressurized chamber must be known to better tolerances than the desired accuracy of sample volume. Finally, the mass must be measured by a separate device.
Further, it is difficult, if not impossible, to determine the bulk modulus of a material by Archimedes method using the conventional procedure briefly described above for at least two reasons. First, the problems identified above with measuring the weight of samples in liquids apply as well in a bulk modulus measurement. Second, to measure bulk modulus, or compressibility, the method must

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measuring physical properties of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measuring physical properties of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measuring physical properties of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3201139

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.