Television – Monitoring – testing – or measuring – Synchronization
Reexamination Certificate
1997-11-26
2001-10-30
Eisenzopf, Reinhard J. (Department: 2614)
Television
Monitoring, testing, or measuring
Synchronization
C348S194000, C348S192000, C348S180000, C348S726000, C324S095000, C455S067700, C455S226100, C455S226200, C455S280000
Reexamination Certificate
active
06310646
ABSTRACT:
FIELD OF INVENTION
The present invention relates generally to RF test instruments, and more particularly to a RF leakage detector and signal level monitor for use in connection with CATV coaxial cable distribution networks.
BACKGROUND OF THE INVENTION
Community Antenna Television (“CATV”) systems are used in a widespread manner for the transmission and distribution of television signals to end users, or subscribers. In general, CATV systems comprise a transmission subsystem and a distribution subsystem. The transmission subsystem obtains television signals associated with a plurality of CATV channels and generates a broadband CATV signal therefrom. The distribution subsystem then delivers the CATV broadband signal to television receivers located within the residences and business establishments of subscribers. The complexity and size of the distribution subsystem requires that operation and performance be periodically tested and/or monitored.
Two tests often performed by CATV service providers are signal level monitoring and leakage detection. CATV service providers use signal level monitors to measure the signal level of particular channel frequencies at any part of the distribution subsystem. A technician connects the signal level monitor to the coaxial cable at any location within the distribution subsystem. The signal level monitor allows the technician to obtain data regarding the frequency response of the distribution subsystem and identify distribution subsystem and transmission subsystem related problems.
Leakage detectors are devices that detect and/or measure the leakage of a broadband CATV signal from the distribution subsystem. Leakage refers to the transmission of signals through breaches or other nonconformities in the CATV distribution subsystem. In particular, the distribution subsystem, which typically comprises coaxial cable, amplifiers and other devices, ideally provides a relatively low-loss conduit between the CATV transmission subsystem and subscribers′ television receivers. If, however, portions of the distribution subsystem are physically damaged, for example, the coaxial cable is damaged, kinked or broken, then the broadband CATV signal or portions thereof may leak through the damaged distribution subsystem causing unwanted transmission into the atmosphere. Since portions of the allocated CATV bandwidth overlap with frequencies allocated for aeronautical communication, excessive leakage of CATV signals can therefore undesirably interfere with aeronautical-related signal transmission and reception. As a result, government regulations permit only a finite level of CATV signal leakage. Leakage detectors help determine compliance with government regulations and can otherwise provide information as to the performance of particular sections of the distribution subsystem.
Signal level monitoring and leakage detection techniques typically use the signal level of the horizontal or vertical synchronization pulse of a television signal to provide an accurate and consistent measurement. To this end, signal level monitoring and leakage detection devices typically demodulated a television signal to be tested to obtain a baseband signal. Such devices then used analog or digital techniques to measure the level of either the vertical or horizontal synchronization pulses in the baseband signal.
A drawback to prior art signal level monitoring devices and leakage detection devices is their component cost. The circuitry used in such devices, including the analog circuitry used to perform demodulation of the television signal to be tested, adds significantly to the product cost. Furthermore, prior art signal level monitoring devices and leakage detection devices that utilize analog measurement circuitry suffer from additional drawbacks that are overcome by digital measurement circuitry. For example, due to component variances, analog measurement circuitry, requires calibration in order to obtain accurate readings; however, digital measurement circuitry does not effectively exhibit such variances. Furthermore, unlike digital measurement circuitry measurement levels provided by analog measurement circuitry will be effected due to age and temperature of the analog components comprising the analog measurement circuitry. Analog measurement circuitry is also not easily altered in order to perform additional functions or improvements over existing functions. Digital measurement circuitry, however, may be altered by simply providing the digital measurement circuitry with new software routines software upgrades.
Accordingly, there is a need for a signal level monitoring device that reduces component requirements in order to reduce its cost and that provides for digital measurement of the monitored signal level in order to overcome the above drawbacks of analog measurement. Likewise, there is a need for a leakage detection device that reduces component requirements in order to reduce its cost and that provides for digital measurement of the leakage signal level in order to overcome the above drawbacks of analog measurement.
SUMMARY OF THE INVENTION
The present invention fulfills the above need, as well as others, by providing a signal level monitor and a leakage detector that do not require analog components to effectuate demodulation of a television signal to be tested. Instead, the signal level monitor digitizes an intermediate frequency (IF) television signal and obtains a signal level measurement from control information embedded in the television baseband signal of the digitized IF television signal. Similarly, the leakage detector digitizes a received IF television signal and obtains a leakage detection measurement from control information embedded in the television baseband signal of the digitized IF television signal. The control information of a television baseband signal includes, for example, the vertical synchronization (“sync”) information, the horizontal sync information, and potential quiet lines. As a result, the signal level monitor and the leakage detector of the present invention eliminate the costs associated with the analog demodulators of prior systems and remove drawbacks associated with analog measurement circuitry.
An exemplary method according to the present invention is a method of obtaining a measurement value representative of a signal level of a RF signal that includes a baseband signal modulated onto a first carrier signal having a first frequency, the baseband signal including (i) program information and (ii) control information. One step of the method includes converting the RF signal to an IF signal comprising the baseband signal modulated onto a second carrier signal of a second frequency wherein the IF signal includes (i) the program information of the baseband signal and (ii) the control information of the baseband signal. The method also includes the step of sampling the IF signal to obtain a digitized IF signal that is a digital representation of the baseband signal modulated onto the second carrier signal wherein the digitized IF signal includes a first digital representation of (i) the program information of the baseband signal and (ii) the control information of the baseband signal. Another step of the method includes the step of demodulating the digitized IF signal to obtain a digitized baseband signal that is a digital representation of the baseband signal wherein the digitized baseband signal includes a second digital representation of (i) the program information of the baseband signal and (ii) the control information of the baseband signal. Finally, the method of the present invention encompasses determining from the digitized baseband signal the measurement value that is representative of the signal level of the RF signal.
The present invention further includes various apparatus for carrying out the above method. For example, one apparatus according to the present invention includes an RF input, a frequency conversion circuit, an A/D converter, and a digital signal processing circuit. The RF input is configured to receive a RF sig
Bowyer Andrew E.
Shi Pingnan
Zhang Qin
Eisenzopf Reinhard J.
Maginot Addison & Moore
Natnael Paulos
Wavetek Corporation
LandOfFree
Method and apparatus for measuring a radio frequency signal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for measuring a radio frequency signal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measuring a radio frequency signal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575231