Image analysis – Applications – Biomedical applications
Reexamination Certificate
1999-01-21
2001-12-11
Au, Amelia M. (Department: 2623)
Image analysis
Applications
Biomedical applications
C083S915500, C382S152000
Reexamination Certificate
active
06330348
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to sectioning histology tissue samples using a microtome, and more particularly to a method and apparatus for measuring and evaluating the performance of histology laboratory microtomes and microtome accessories.
2. Description of the Prior Art
Definitions: As used herein, the term “microtome” refers to a device in which a block of sample or tissue is precisely cut such that a very thin layer of material is removed, or “sectioned” from the surface of the block. The term “microtomy” applies to the functioning of the microtome. While microtomes have been developed in a wide variety of configurations, most modern devices are arranged such that the block is fixed to one end of a vertically moveable arm and is engaged with a stationary blade; therefore, the term “vertical markings” applies to linear features aligned parallel to the motion of the block, and the term “horizontal markings” applies to linear features aligned in a direction perpendicular to the motion of the block, and parallel to the edge of the microtome blade.
The term “block face microscope” refers to a device, such as that described in U.S. Pat. No. 4,960,330, that produces microscopic images of samples by recording the face of a block in which the samples are embedded, rather than recording from the sections after they are cut from the block. The term “reflected light” refers to light incident to a surface that is returned in a specular, or mirror-like manner, rather than being scattered diffusely or absorbed and reemitted at a different wavelength, as in the case of fluorescence or phosphorescence.
The term “chatter” refers to chips in the surface of a block, sometimes randomly arranged, but often forming a series of “venetian-blind”-like periodic, parallel horizontal markings that are of a microscopic scale. Alternatively, the term “washboarding” refers to similar repeating horizontal markings that are of a sufficiently long period to be visible to the naked eye.
Artifacts of conventional microtomy: In present day practice the histologic preparation of organic tissue samples and other material for microscopy, both optical and electron microscopy, is normally carried out by infiltrating and embedding a sample in a solid block of material; cutting thin sections from the block on a microtome; placing the sections on a solid support such as a glass slide or metal grid; and staining the sections prior to examination through a microscope. Alternatively, the cut face of the block itself may be imaged by block face microscopy, obviating the need for the prepared individual sections.
In either technique, the quality of the visual information that results is influenced by several factors related to the function of the microtome and its accessories, including: 1) the mechanical state of the microtome core mechanism; 2) the status of the microtome knife; 3) in the case of motorized microtomes, the performance and state of adjustment of the drive components; 4) the configuration and composition of the block; and 5) in the case of block face microscopy, the state of the light source illuminating the block.
Block and section artifacts arising within the microtome mechanism: Improper adjustment or mechanical deterioration of the microtome mechanism may result in vibration, backlash, or other loss of precision that will degrade the quality of histologic sections and, correspondingly, may produce detectable deviations from a perfectly flat surface on the face of the block.
If the clamp that holds the block in place on the microtome is not sufficiently tightened, or if other microtome parts become loosened due to wear, an unstable block will result. This may produce an artifact referred to as “thick and thinning”; that is, the section thickness may oscillate from being too thick to too thin. Alternatively, a loose block may result in wrinkles or compression artifacts in sections, or in extreme cases the knife may “chop”, penetrating deeply into the block and halting sectioning. This malfunction causes a deep horizontal marking to appear in the block face.
The speed at which the microtome is operated can have profound effects on section quality. This is especially so when cutting plastic sections using glass or diamond blades. If the velocity of the block relative to the blade is excessive, chatter may result, which in turn may damage the edge of a glass or diamond knife. Vibrations transmitted to the block due to wear or defects on cams, gears, drive screws, and other components within the core mechanism of the microtome may also produce chatter or washboarding on sections, which will be duplicated on the face of the block.
Block and section artifacts arising from the microtome knife: The microtome blade is the predominant source of artifacts in the sectioning of tissue blocks. Imperfections in the knife will result in direct damage to histologic sections and thus to the face of the block.
Knives for microtomy are made primarily from metal, glass or diamond, but other exotic materials such as sapphire have been employed. Metal knives are typically employed to section paraffin-embedded and frozen material, while glass and diamond are commonly used for cutting plastic polymer blocks, including those prepared for electron microscopy.
Microtome blades may lead to suboptimal microtome performance due to dullness, nicks, corrosion, adherence of foreign material, misalignment, as well as flaws induced in the edge of the blade during its fabrication and resharpening. Each of these defects will produce characteristic markings on the surface of the block during sectioning.
Blade dullness may result from normal wear or improper sharpening. In the case of glass knives that are not used immediately after fabrication (by controlled fracture of plate glass in the laboratory), the keenness of the edge may be lost due to gradual deformation of the glass, which over time behaves as a very slow-moving liquid. Dull blades will induce compression marks or wrinkles in sections and may cause chatter, or in the case of the softer types of embedding medium such as paraffin, may result in smearing of the tissue both in the section and on the block face. Sections cut with a dull blade may not form themselves into continuous ribbons, a desirable feature when multiple sections are to be mounted on a single glass slide.
Focal defects in the edge of the blade such as burrs, nicks, or manufacturing defects will produce vertical lines in the block face, as well as corresponding scratches in sections. If severe, such flaws may lead to shredding of sections.
Histologic section quality is highly dependent as well upon the orientation of the knife relative to the block face, and in particular to the “clearance angle”—that angle produced between the surface of the edge of the blade closest to the block and the plane of the block face. A misaligned knife blade will cause a variety of artifacts, including irregular, skipped, or excessively thick or thin sections. Too little tilt on the blade can cause the section to adhere to the block face as it passes by the knife on the return stroke instead of separating cleanly. In contrast, an excessive blade angle can result in a washboarding artifact.
In addition to these problems, embedding material, especially paraffin, may build up on the edge of the knife, causing vertical markings on the section and on the block face.
Artifacts seen in motorized microtomes: In the case of motorized microtomes, vibration originating in the motor may be transmitted to the tissue block, producing periodic or non-periodic lines on the block face during sectioning. If stepper motors are used to power the microtome, a regular pattern of straight horizontal lines may appear on the section and block face. This is a reflection of the non-continuous nature of the force produced by these types of motor drives, as well as vibrations originating in the motor which might be transmitted to the block via the microtome chassis. Various components of the drive chai
Bolles Michael E.
Hendrickson Andrew D.
Kerschmann Russell L.
Au Amelia M.
Johnson Larry D.
Johnson & Stainbrook LLP
Miller Martin
Resolution Sciences Corporation
LandOfFree
Method and apparatus for measurement of microtome performance does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for measurement of microtome performance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measurement of microtome performance will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2597355