Method and apparatus for irradiating a biological fluid

Radiant energy – Supported for nonsignalling objects of irradiation – With source support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S004010, C604S006070, C422S025000

Reexamination Certificate

active

06369394

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a method and apparatus for luminating a fluid. Specifically, the present invention relates to an apparatus and method that improves the efficiency and uniformity of irradiating a biological fluid, such as blood, containing a photosensitive material utilized to inactivate pathogens or the like therein.
BACKGROUND OF THE INVENTION
In recent years there has been great interest in inactivating viruses such as Hepatitis B (HBV), Hepatitis C (HCV), Human T Lymphotrophic Retrovirus Type 3 (HTLV), Human Immunodeficiency Virus (HIV), and Lymphadenopathy Associated Virus (LAV) in blood and blood products. At present, methods for inactivating these viruses in blood and blood fractions include (1) treatment with a chemical disinfectant such as formaldehyde (see U.S. Pat. No. 4,833,165); and (2) treatment with photosensitizers. For example, U.S. Pat. No. 5,232,844 describes the use of phthalocyanines; U.S. Pat. No. 5,041,078 describes the use of sapphyrins; U.S. Pat. Nos. 4,169,204, 4,294,822, 4,328,239 and 4,727,027 describe the use of various furocoumarins (psoralens) and analogs thereof; Meruelo et al. [
Proc. Nat. Acad. Sci. U.S.,
85, 5230-5234 (1988)] have described the use of hypericin; Lambrecht et al. [
Vox Sang.
60, 207-213 (1991)] have described the use of phenothiazine dyes (methylene blue and toluidine blue); and U.S. Pat. No. 4,915,683 describes the use of merocyanine dyes to inactivate viruses. According to these methods, an exogenous photosensitizer is added to the blood or blood fraction and the solution is irradiated with light of appropriate wavelengths to inactivate the virus.
Phenothiazine dyes are photochemicals that bind to nucleic acids. Under suitable activation conditions such as long-wavelength UV irradiation, phenothiazine dyes are believed to crosslink the DNA and RNA strands in viruses, thereby disabling uncoiling and replication. They also react with membrane structures and they induce the production of virucidal oxygen radicals from molecular oxygen. These characteristics of phenothiazine dyes form the basis of viral inactivation and certain photochemotherapies. [See PCT application WO 91/03933.]
Psoralens are in some ways similar to phenothiazines in that activation with long-wavelength UV irradiation crosslinks the DNA and RNA strands in viruses, thereby disabling uncoiling and replication. [See Anderson and Voorhees,
Ann. Rev. Pharmacol. Toxicol.
20, 235-57 (1980).] More recently psoralens have been applied successfully to inactivate blood-born viruses. [See Rai, S. et al., “Dramatic Improvements in Viral Inactivation with Brominuted Psoralens, Naphthalencs and Anthracenes,”
Photochem. and Photobiol.
58:59-65 (1993).] The interaction mechanism of psoralens with DNA has been extensively studied and reviewed. A preliminary intercalation complex is formed between the psoralen and two base pairs of the duplex DNA via hydrophobic interaction. Subsequent exposure to UV-A irradiation then causes photoconjugation between the furocoumarin structure of the psoralen and one or two bases of the nucleic acid (to form mono- and bi-functional adducts, respectively). Pyrimidine bases, particularly thymine, have been identified as participants in these reactions. Subsequently, the mono-functional adduct may absorb a photon and react with a second base of the complementary strand of the DNA to form a covalent crosslink. [See Anderson and Voorhees op. cit. page 240.]
As use of photosensitizers increases, results are establishing that the effectiveness of such agents is dependent upon uniform irradiation of the fluids containing the agents. However, existing prior art methods and apparatus do not employ means that take into account this consideration and other factors for irradiating the photosensitizers. The teachings of the prior art do not sufficiently control defraction of the illumination source, do not adequately control extinction that occurs when irradiating an opaque material (e.g. red blood cells) and principally teach “open” systems where the integrity of a sealed blood system is not insured. Also, various pathogen inactivation agents such as phatholocyanine dyes, methylene blue, psoralens
2
hypericin, etc. are best activated by either ultraviolet, visible and infrared wavelength light components. For example, depending on the type of blood product desired to be irradiated, variations in the quantity of illumination must be adjustable in terms of luminance output and optical path length between fluid components due to the extinction factor. More opaque red blood cells require a sufficiently narrow space between each other to allow the blood cells at the end of the light path to receive a comparable quantity of illumination to those at the beginning of the path, without over-exposure which can damage the cells. Differently, platelet concentrates and plasma can be adequately and evenly illuminated with a much longer optical path length because they are less opaque than blood cells.
The deficiencies in the prior art are largely attributable to the failure to recognize that the optical path length between fluid components nearest an illumination source and those further away is critical to properly and effectively irradiate a fluid containing photosensitizers. Additionally, conventional means in the art of irradiating a fluid product do not provide mixing during the exposure period. Thus, uneven irradiation is problematic and more likely and the tendency to over-expose simply to achieve target levels of an activation throughout the fluid product often occurs.
A need exists for controlling the effective optical path length for irradiating a fluid. A further need exists to improve the efficiency and uniformity of biological fluid exposure to illumination. A still further need exists to reduce potential side effects to blood components due to overexposure. As will be described in greater detail hereafter, the method and apparatus of the present invention meets these needs and overcome the short comings of the prior art.
SUMMARY OF THE INVENTION
The present invention includes an apparatus for illuminating a fluid having photosensitive material therein comprising a surface. A roller is separated from the surface by a space and the space is adapted to receive a flexible container. The flexible container on the surface contacts the roller and is translated through the space. A light source is adapted to transmit light to the space to illuminate the fluid and react with photosensitive material therein as the flexible container translates through the space.
Another feature of the present invention may relate to a second roller juxtaposed from the roller and separated from the surface by a second space. In this way, the flexible container on the surface contacts the second roller after passing through the space and translates through the second space for further irradiation of the fluid, permitting successive irradiation using different wavelengths, if necessary, and benefiting the photo-chemical/blood component combination of interest.
Still another feature of the present invention may concern a second roller juxtaposed from the roller and a second support roller juxtaposed from a support roller. The second roller and second support roller are separated by a second space and the flexible container contacts the second roller and second support roller after passing through the space between the roller and support roller, for further irradiation of the fluid.
The invention also provides for a method of inducing a photoreaction of a photosensitive material within a fluid in a flexible container comprising: placing the flexible container into a well-defined space between a roller and a surface; translating the container between the roller and surface by squeezing the container through the space; and illuminating the fluid within the container as the container translates and is squeezed through the space by directing light towards the space thereby in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for irradiating a biological fluid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for irradiating a biological fluid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for irradiating a biological fluid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2833079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.