Method and apparatus for ionized plasma deposition

Chemistry: electrical and wave energy – Apparatus – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S298060, C204S298110, C204S298150

Reexamination Certificate

active

06627056

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to integrated circuit structures. More particularly, the invention relates to a method and apparatus for depositing metallic nitride layers on a substrate using a Physical Vapor Deposition (PVD) system and technique.
2. Background of the Related Art
In the formation of integrated circuit structures, an insulating layer is formed over active devices, or over a patterned underlying metal interconnect layer, and vertical openings are then formed through this insulating layer to provide electrical communication from the upper surface of the insulating layer to the underlying active device or electrical interconnect. Such openings are then filled with an electrically conductive material to provide electrical connection between the underlying elements and conductive materials, such as a metal interconnect, subsequently formed on the surface of the insulating material. In the fabrication of both horizontal and vertical interconnects, barrier layers are typically deposited over the patterned surface of a substrate to provide a barrier to prevent diffusion between adjacent materials. Conventional barrier layers include materials such as titanium nitride (TiN), tantalum nitride and tungsten nitride. The materials have been conventionally deposited using physical vapor deposition (PVD). TiN layers, in particular, have been used between adjacent materials as barrier layers for preventing the interdiffusion of adjacent layers of materials such as silicone dioxide and aluminum, for example. The barrier layer acts to limit the diffusion between the conductive and non-conductive materials and increases the reliability of the interconnect.
A conventional physical vapor deposition (PVD) processing chamber is typically operated at a pressure of about 1-10 millitorr using an inert gas such as argon (or a mixture of gases). A target of the material to be deposited (or sputtered) such as titanium is disposed in the chamber and connected to a source of DC and/or RF power. The substrate being processed is mounted on a support member spaced from and generally parallel to the target. A glow discharge plasma is struck in the processing gas by the application of DC (or RF) power to the target, and the positive argon ions are attracted to the negatively charged target. Atoms of the target material are knocked loose or sputtered from the target due to the impact momentum of the impinging argon ions and their interaction with the target material structure or lattice. The particles of material sputtered from the target are generally neutral atoms or molecules. These particles are directed in a plurality of angles from the target surface, following a distribution of directions which varies as the cosine of the angle from the particle trajectory to an angle normal to the target surface. Consequently a limited number of atoms are sputtered from the target and travel directly vertically or normal to the surface of a substrate on which they are to be deposited.
An improved PVD deposition apparatus and process is enhanced by higher-pressure background gas and an RF (radio frequency) coil, known as an ionized metal plasma (IMP) chamber and process. The IMP process provides ionization of the neutral sputtered metallic particles between the target and the substrate by utilizing background gas at pressures in the range of about 10 to about 40 millitorr in the processing chamber. A helical coil is mounted inside the chamber between the target and the substrate support and is connected to a source of RF power. The axis of the RF coil is placed generally perpendicular to the target surface and the substrate surface. If the pressure in the chamber is, for example, about 30-40 millitorr, the internal inductively coupled coil provides a high density plasma in the region between the target and the substrate support. Sputtered target atoms become ionized and positively charged as they pass through the high density plasma region. The metal ions are attracted by the negatively biased substrate and thus travel toward the substrate in a more vertical direction than occurs in conventional PVD chambers.
With the decreasing sizes of features and increased aspect ratios, barrier materials, such as TiN, are being deposited on a substrate using an IMP Physical Vapor Deposition system having a target and RF coil made of titanium. To achieve TiN deposition, both Argon (Ar) and Nitrogen are typically introduced simultaneously into a conventional IMP chamber at or near the substrate in the bottom of the chamber. After introducing both Ar and Nitrogen into the IMP chamber, power is provided to the target and the RF coil. Thereafter, a wafer bias is provided to promote deposition of the TiN on the substrate surface.
FIG. 1
, is a flow diagram illustrating a conventional titanium nitride process
200
. The process
200
typically begins with a gas stabilization step
202
which comprises the simultaneous introduction of about 40 sccm Ar and about 30 sccm nitrogen gas through gas inlets at or near the bottom of the chamber. Next, a power ramp step
204
is performed where power is applied to the target and the RF coil to generate a plasma. Concurrent with the power ramp step, a pump down step
206
is performed to maintain a pressure of, for example, about 20 mTorr in the chamber. After the plasma is generated, a deposition step
208
is performed by applying a wafer bias. During this step, the concentrations of Ar and Nitrogen are tuned to about 40 and 28 sccm, respectively.
The reactive sputtering techniques described above typically result in titanium nitride build-up on the sputtered surface of the titanium target over time causing the deposition rate of titanium nitride to decrease to about one third of the typical sputtering rate. This results because titanium nitride has a lower sputtering yield than titanium. Additionally, the nitrided target results in a TiN barrier layer formed on the substrate surface which has a higher electrical resistivity. The introduction of the two gases also provides unnecessarily high partial pressures of nitrogen near the target surface resulting in nitriding of the target.
It would be valuable to provide an improved PVD apparatus and process which could significantly improve the deposition rate of a nitrided material on a substrate surface by decreasing the likelihood that the target would be nitrided in the sputtering process.
SUMMARY OF THE INVENTION
In one aspect, the present invention is directed to a plasma enhanced physical vapor deposition system, comprising: a vacuum chamber housing having a sputtering target, a substrate support member spaced apart from the target, a first gas inlet port in the vacuum chamber housing proximate the sputtering target and a second gas inlet port in the vacuum chamber housing proximate the substrate support member. The first gas may be an inert gas such as argon.
In another aspect, the present invention is directed to a method of enhancing the deposition of metallic layers on a substrate within a vacuum chamber having a sputtering target and substrate support member therein, comprising substantially evacuating the vacuum chamber; in a gas stabilization step, introducing a first gas at a predetermined pressure into the vacuum chamber proximate a sputtering target; following the gas stabilization steps, in a power ramp step, initiating a plasma within the chamber, and following the power ramp step, in a metallic deposition step, introducing a second gas into the chamber with the plasma already initiated and applying a coil, wafer and target bias to initiate sputtering. The first gas may be argon, the second gas may be nitrogen, and the sputtering target may be titanium. Still further, the power ramp step may include initiating the plasma by applying target power and RF power in the presence of only argon and the metallic deposition step may introduce nitrogen after the plasma has been initiated.


REFERENCES:
patent: 4425218 (1984-01-01), Robinson
patent: 4810342 (1989-03-01), Inoue
pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for ionized plasma deposition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for ionized plasma deposition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for ionized plasma deposition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100541

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.