Multiplex communications – Communication over free space – Combining or distributing information via frequency channels
Reexamination Certificate
1998-06-30
2004-09-21
Vanderpuye, Kenneth (Department: 2661)
Multiplex communications
Communication over free space
Combining or distributing information via frequency channels
C370S208000
Reexamination Certificate
active
06795424
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
In the last few years, the number of commercial cellular telephone users has risen dramatically, but the bandwidth allocated to cellular telephony has remained nearly constant. Because of the limited nature of cellular telephony bandwidth as a resource, the cost of obtaining bandwidth has risen dramatically. This necessitates the efficient utilization of available bandwidth resources to maintain commercial viability.
Many intelligent schemes for optimizing the use of available bandwidth resources have been proposed. These methods include such means as signal compression or elimination of non-essential frequency artifacts to reduce the overall bandwidth. Other systems include Time Division Multiple Access (TDMA) where multiple users utilize the same frequency band by transmitting bursts of data in specified periodic time slots or Code Division Multiple Access (CDMA) systems.
The use of Orthogonal Frequency Division Multiplexing (OFDM) as a modulation and multiple access method for commercial wireless communication systems is not widely practiced and is expected to grow in the future. Potential applications include wireless local loop, wireless local area networks and cellular and PCS systems. Possessing many of the benefits of well known time and code division multiple access systems, OFDM based multiple access systems are also referred to as Orthogonal Frequency Division Multiple Access (OFDMA) systems in the literature. Recently, OFDM was chosen as the modulation scheme for the European Digital Audio Broadcast (DAB) standard and the European Terrestrial Digital Video Broadcast (DVB-T) standard. OFDM based hybrid multiple access systems such as OFDM-TDMA and Multicarrier-CDMA are also being actively researched.
Such communication systems consist of a downlink and an uplink. The downlink is the unidirectional communication link from a single base-station (BS) to multiple remote (possibly mobile) transceivers. The uplink is the unidirectional communication link from these transceivers to the BS. Typically, the downlink and uplink occupy distinct non-overlapping frequency bands—also called frequency division duplex (FDD) operation. It is also possible to operate in time division duplex (TDD) (“ping-pong” or half-duplex mode) where the uplink and downlink occupy the same frequency band but alternate in time. This is generally preferred only for indoor systems. The uplink is a multiple access channel since the plurality of remote transceivers access or share the uplink channel resources. The downlink can be thought of as a broadcast or multicast link. In general, the problem of interference suppression is more difficult and important for the uplink since typically it represents the capacity bottleneck (compared to the downlink).
One of the major problems faced by wireless communication systems is that of interference. In particular, in OFDM systems, two main categories of interference are Inter-Bin Interference (IBI) and Co-channel Interference (CCI). IBI is the manifestation of loss of orthogonality between different bins of a OFDM system. Each data carrying bin acts as a source of interference (or noise) for every other data carrying bin. CCI refers to any other undesired signal whose spectrum overlaps with the spectrum of the particular OFDM system under consideration and causes interference. For example, sources of CCI may be other analog or digital communication/broadcast systems (which may or may not be using OFDM) operating in the same (or adjacent) frequency band in the same
earby geographic areas. IBI and CCI can increase the bit-error-rate of the particular frequency bins that are experiencing the interference. As a result, the OFDM system performance may be degraded. Thus, interference suppression techniques are desirable for high-performance systems. A number of different techniques have been prepared to either avoid or suppress interference.
A factor which must be considered in multiple access wireless systems is that of power control or automatic gain control (AGC). Essentially, the receiver must be able to ensure that the received power of each bin is within a certain target range. This problem is made difficult by the presence of fading which can easily cause fluctuations in the received power in the range of 20-40 dB in a matter of seconds. Thus, in wireless systems, some basic power control mechanisms may be used. However, these power control mechanisms may not be perfect. Imperfect power control may exacerbate the effect of IBI.
If CCI is localized in frequency (i.e., narrowband CCI), the particular bin (or bins) that are affected such that the average signal-to interference-plus-noise ratio (SINR) is reduced below a certain threshold can be left unused. If the interference is temporary, the bin can be reused when the SNR improves. The basic procedure is well established in digital subscriber line (DSL) modems which use DMT as the modulation scheme. This procedure may be implemented by the BS in a wireless OFDM system by measuring any CCI across the frequency band of interest. However, the problem is more difficult in wireless systems because of the presence of fading which can also greatly reduce the SNR. Thus, the average SNR must be tracked. Fading results in fluctuations in the channel frequency response with time.
One measure of the rate of change of the channel response with time is given by the so-called Doppler spread (units of Hertz). When there is little relative movement between the receiver and transmitter (or when the propagation environment is relatively static), the multipath fading can be considered to be slow fading and the Doppler spread is around 5 Hz or less (this is not to be confused with the attenuation due to distance which also changes slowly, typically according to the log-normal distribution). In such cases (e.g. wireless local loop and indoor systems), the receiver can track and estimate the channel frequency response for each bin with good accuracy. This is typically accomplished via the use of periodic pilot sub-symbols inserted in the sub-symbol streams of each bin of interest. For example, for a given data carrying bin, every pth (say p=8 or 16) sub-symbol can be pilot (training) sub-symbol to estimate the channel periodically. For in-between sub-symbols, the receiver can estimate the channel by operating in decision directed mode or by interpolation. For fast fading channels (Doppler spread 10-200 Hz), estimating the channel is more difficult and sophisticated time-frequency interpolation techniques must be used (this is a drawback of OFDM).
Several techniques have been proposed in the literature for combating IBI and/or CCI. One method of addressing IBI is to space data carrying bins apart in frequency and leave bins unused there between. This is effective because: (a) the effect of IBI decreases with increase in frequency separation between bins and, (b) for a given total bandwidth, there are fewer active bins. However, this is wasteful of bandwidth and not a preferable solution. Another approach for addressing IBI and CCI is forward error correction (FEC) codes, mostly implemented in conjunction with interleaving. FEC codes may afford some protection against noise and interference. A related method is the use of Trellis coded modulation (TCM) to address IBI and CCI. However, the methods proposed heretofore have met with limited success. A need remains for an improved method and apparatus to overcome the problems associated with IBI and CCI.
One aspect of the present invention is targeted at interference suppression in the uplink of a FDD OFDMA system using spatial signal processing via antenna arrays deployed at the BS receiver. The present invention is not limited to FDD OFDMA, but may be to carry out interference suppression in other scenarios as well such as for hybrid OFDM-TDMA systems: Multicarrier-CDMA systems, TDD systems
Kapoor Samir
Marchok Daniel J.
McAndrews Held & Malloy Ltd.
Tellabs Operations Inc.
Vanderpuye Kenneth
LandOfFree
Method and apparatus for interference suppression in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for interference suppression in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for interference suppression in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3192258