Method and apparatus for interference reduction in a...

Communications: directive radio wave systems and devices (e.g. – Directive – Utilizing correlation techniques

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490, C342S357490

Reexamination Certificate

active

06788251

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to locating the position of an object, and in particular embodiments of the present invention are directed toward using a satellite positioning system to locate the position of objects that are obstructed.
2. Background Art
People use positioning systems to precisely determine the locations of objects. One type of positioning system is the Global Positioning System (GPS) and uses multiple satellites that orbit the earth. The satellites transmit signals to earth that can be detected by anyone with a receiver. Currently, however, it is impossible to track objects using the receiver when the object is obstructed, for instance within an enclosed structure such as a parking garage or building, or under a tree or bridge. Before further discussing the drawbacks associated with current positioning systems, it is instructive to discuss navigation generally.
Navigation
Since the beginning of recorded time, people have been trying to figure out a reliable way to determine their own position to help guide them to where they are going and to get them back home again. On land people relied on maps, landmarks, and local residents to navigate. There are no landmarks or residents on the ocean, however, so sea travel was particularly difficult. To avoid getting lost, early sailors followed the coastline closely, rarely going out of sight of land. When humankind first sailed into the open ocean, they used the stars to chart their path. The north star was used in the northern hemisphere but was not available once a ship was too far south of the equator. The compass was also used to determine the direction of North but could only provide direction information, but not position information. Eventually clocks were developed that could be used at sea so that longitudinal (east west) directions could be determined.
Still, however, it was impossible to exactly where you were with any precision. In modern times, the need and desire to know the exact location on sea or land within meters arose. Military, commercial, and personal requirements created the need for more accurate positioning systems. In the early 20th century ground based radio navigation systems were developed. One drawback of using a ground based radio system is the tradeoff between coverage and accuracy. High-frequency radio waves provide accurate position location but can only be picked up in a small, localized area. Lower frequency radio waves cover a larger area, but cannot pinpoint the location of an object with precision.
Satellite Positioning System
To partially solve the problems associated with ground-based navigation systems, high-frequency radio transmitters were placed in space as part of the GPS system. As is well known, GPS was established by the United States government, and employs a constellation of satellites in orbit around the earth at an altitude of approximately 26500 km. Currently, the GPS constellation consists of 24 satellites, arranged with 4 satellites in each of 6 orbital planes. Each orbital plane is inclined to the earth's equator by an angle of approximately 55 degrees.
Each GPS satellite transmits microwave L-band radio signals continuously in two frequency bands, centered at 1575.42 MHz and 1227.6 MHz., denoted as L1 and L2 respectively. The GPS L1 signal is quadri-phase modulated by a coarse/acquisition code (“C/A code”) and a precision ranging code (“P-code”). The L2 signal is binary phase shift key (“BPSK”) modulated by the P-code. The GPS C/A code is a gold code that is specific to each satellite, and has a symbol rate of 1.023 MHz. The unique content of each satellite's C/A code is used to identify the source of a received signal. The P-code is also specific to each satellite and has a symbol rate of 10.23 MHz. The GPS satellite transmission standards are set forth in detail by the Interface Control Document GPS (200), dated 1993, a revised version of a document first published in 1983.
Another satellite positioning system is called GLONASS. GLONASS was established by the former Soviet Union and operated by the Russian Space Forces. The GLONASS constellation consists of 24 satellites arranged with 8 satellites in each of 3 orbital planes. Each orbital plane is inclined to the earth's equator by an angle of approximately 64.8 degrees. The altitude of the GLONASS satellites is approximately 19100 km.
The satellites of the GLONASS radio navigation system transmit signals in the frequency band near 1602 MHz, and signals in a secondary band near 1246 MHz, denoted as L1 and L2 respectively. The GLONASS L1 signal is quadri-phase modulated by a C/A code and a P-code. The L2 signal is BPSK modulated by the P-code. Unlike GPS, in which all of the satellites transmit on the same nominal frequency, the GLONASS satellites each transmit at a unique frequency in order to differentiate between the satellites. The GLONASS L1 carrier frequency is equal to 1602 MHz+k*0.5625 MHz, where k is a number related to the satellite number. The GLONASS L2 carrier frequency is equal to 1246 MHz+k*0.5625 MHz. The GLONASS C/A code consists of a length 511 linear maximal sequence. Details of the GLONASS signals may be found in the Global Satellite Navigation System GLONASS—Interface Control Document of the RTCA Paper No. 518-91/SCI59-317, approved by the Glavkosmos Institute of Space Device Engineering, the official former USSR GLONASS responsible organization.
In addition to transmitting high frequency signals, both satellite systems send navigation messages and ephemeris data. The navigation message is a low frequency signal that identifies the satellite and provides other information. The ephemeris data provides information on the path and position of the satellite.
Current Receivers
Conventional receivers, called GPS or SPS receivers, work well when the signals travel directly from the satellite to the receiver with no obstructions in the way. When passing under trees, bridges, through garages and when the receiver is in a building, however, problems occur. Specifically, these objects present barriers that interfere with the signal and weaken it. Even worse, the navigation message, which is typically more difficult to detect than the signals, is often undetectable when there are obstructions.
Secondly, the receiver relies on detecting reflected signals. Obstructions between the signal sent by the satellite and the receiver compromise the signal path. The signal reflects off nearby surfaces and then to the receiver. Some of these signals may be stronger than another, even though the distance the signal travels is further, depending on the reflecting surface or surfaces. This extra distance traveled by the signal can introduce errors into the distance and location calculations.
It is desirable to overcome this difficulty for a variety of reasons. First, it would be desirable to locate an object in a building in order to allow the users of positioning devices to obtain a fix and assess position-related data to access nearby services. Second, federal mandates may require the ability to locate cell phone users to a high degree of accuracy (e.g. within 100 feet) so that 911 services can locate an emergency caller even when the cell phone is used in a building or obstructed area. It would be desirable to provide a SPS receiver to overcome the above problems.
SUMMARY OF THE INVENTION
Embodiments of the present invention relate to a method and apparatus for reducing interference in a positioning system. According to one or more embodiments of the present invention, the receiver in a conventional positioning system is configured to communicate with a terrestrial broadcast station. The terrestrial broadcast station transmits assistance signals to the receiver and enable the receiver to locate very weak signals being transmitted from the satellites in the positioning system.
In one embodiment, the assistance signals include Doppler frequencies for the satellites. In another embodiment, the assistance signals include Ephemeris data. In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for interference reduction in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for interference reduction in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for interference reduction in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3260840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.