Method and apparatus for ink jet printing

Incremental printing of symbolic information – Ink jet – Medium and processing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S100000, C347S101000

Reexamination Certificate

active

06726317

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to ink jet printing, and particularly useful for ink jet printing onto textiles, onto wide web, large panel and other extended area substrates, and onto other substrates on a high speed and commercial scale.
BACKGROUND OF THE INVENTION
Needs have arisen for the printing of large banners, flags and signs in quantities that are not economical for many conventional printing processes. Proposals have been made to print such products from electronic source files that can be processed directly on the printing press or printing system, rather than through steps such as film image-setting and plate-making. One such process is ink-jet printing. These processes have been attempted on surfaces such as vinyl, but printing with success onto textile surfaces has been even more limited. Such processes have been slow and lack reliability. The clogging of print heads in ink jet printing has been too frequent for use in wide width and large area substrates, and the processes used have not produced acceptable printing on textile materials.
The printing of substrates that are more than several feet, or a meter, wide, referred to as the special category of “wide width” printing, into which category the printing of signs and banners, office partitions, mattress ticking and most other quiltable materials would fall, is beyond many of the limitations of conventional printing methods. A number of technical problems exist that have deterred the development of the printing of wide fabrics such as mattress covers, upholstery, automobile seat cover fabrics, office partitions and other wide width substrates.
Wide width products are frequently printed in relatively small quantities. Traditional printing typically involves the creation of a plate, a mat, a screen, or some other permanent or at least tangible, physical image from which ink is transferred to the object being printed. Such images contribute a relatively high set up cost that is only economical where the number of identical copies of the product is large. At the other extreme, office printers, for example, print a single copy or a small number of copies of a given document or other item, and are currently of the type that uses no permanent, physical image transfer element, but which rather prints from a software or program controlled electronic image, which can be changed from product to product. Such printing is sometimes referred to as direct digital printing, although the process need not necessarily be literally “digital” in the sense of a set of stored discrete numerical values. Ink jet printers are a common type of such direct digital printers in use today.
Ink jet printers print by projecting drops of ink on demand onto a substrate from one or more nozzles on one or more print heads. Office printers and other narrow width ink jet printers usually dispense water based or other solvent based inks onto the substrate by heating the ink and exploding bubbles of the ink out of the nozzles. These printers are often called bubble jet printers. The ink from such printers dries by evaporation of a solvent. Sometimes additional heat is used to evaporate the solvent and dry the ink. Printing onto wide width substrates with bubble type ink jet printers, or ink jet printers that use high temperature techniques to propel the ink, suffer from limited printhead life or high mean time between failures that require downtime and servicing. The heat used to expel the ink and to cause the evaporation of the solvents, evaporation that occurs during printhead downtime, and the thermal cycling of the heads, causes these print heads to clog or otherwise fail after as little as 20 milliliters of ink is dispensed. Office printers are, for example, often designed so that the print head is replaced every time a reservoir of ink is replenished. For this reason, for larger scale ink jet printing processes, such as wide width printing of films used for outdoor advertising, signage and architectural applications, print heads that use mechanical ink propulsion techniques are more common. Such mechanical print heads include piezo or piezo-crystal print heads, which convert electrical energy into intra-crystal vibrations that cause drops of ink to be ejected from print head nozzles.
Piezo print heads are particularly useful for applying inks that dry by polymerization which can be brought about after the ink leaves the print head and is deposited onto the substrate, usually by exposure to some form of energy medium such as electromagnetic or particle radiation. Inks have been formulated for ink jet printing that can be polymerized by exposure to a radiation curing source such as a focused beam of ultra violet light (UV) or high energy beams of electrons (EB). The inks generally incorporate stabilizers which prevent premature curing due to low levels of light exposure. Therefore, the inks usually require exposure to some threshold level of energy to initiate a polymerization reaction. Unless exposed to such threshold energy levels, such inks do not polymerize and remain stable, with a low tendency to dry in the nozzles or elsewhere unless cured by adequate exposure to the energy medium.
Solvent based inks are primarily cured by evaporation of the solvents. Some solvent based inks can be cured by only air drying, while others require the application of heat to enhance the evaporation of the solvent. In some cases, heat will facilitate a chemical change or polymerization of the ink along with an evaporation of a solvent. Polymerizable inks include monomers and oligomers that polymerize, and other additives. UV curable inks polymerize when exposed to UV light at or above the threshold energy level. These UV curable ink formulations include photo-initiators which absorb light and thereby produce free radicals or cations which induce cross-linking between the unsaturation sites of the monomers, oligomers and polymers, as well as other additive components. Electron beam-cured inks do not require photo-inhibitors because the electrons are able to directly initiate cross-linking.
Heat or air curable inks that are organic solvent based or water based inks often do not have as high a color intensity as UV curable or other polymerizable inks because the pigments or dyes that produce the color are somewhat diluted by the solvent. Furthermore, organic solvents can produce an occupational hazard, requiring costly measures be taken to minimize contact of the evaporating solvents by workers and to minimize other risks such as the risks of fire. Solvent based inks, whether applied with heat or not, tend to dry out and eventually clog ink jet nozzles. In addition, solvent based inks set by forming a chemical bond with the substrate, and accordingly, their formulation is substrate material dependent. As a result, the selection of solvent based ink varies from fabric to fabric. Specific ink compositions are paired with specific fabric compositions to improve the fastness of the ink to the fabric, which results from chemical or electrostatic bonds formed between the ink and the fabric. Where the selected ink composition does not react or otherwise has an affinity with the surface of the particular fabric, the ink merely maintains a physical contact with the fabric surface and typically is easily removed by water, another solvent or abrasion. With UV and other radiant beam-curable inks such as electron beam-cured inks, the bonding between the ink and fabric is primarily mechanical and not limited to specific combinations of ink and fabric.
Polymerizable inks, particularly those cured upon exposure to a radiation or energy medium, are difficult to cure on three dimensional substrates such as the surface of a textile. While UV curable inks are capable of providing higher color intensity and do not present the hazards that many solvent based inks present and can avoid nozzle clogging, printing with UV curable ink onto textile fabric presents other problems that have not been solved in the prior art. To cure UV ink, for example, it must be possible

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for ink jet printing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for ink jet printing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for ink jet printing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3273387

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.