Surgery – Means for introducing or removing material from body for... – Infrared – visible light – ultraviolet – x-ray or electrical...
Reexamination Certificate
2000-12-26
2002-05-14
Mendez, Manuel (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Infrared, visible light, ultraviolet, x-ray or electrical...
C604S096010, C604S020000
Reexamination Certificate
active
06389314
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to techniques and devices for inducing the permeation of medication and the like into body tissue and organs.
BACKGROUND OF THE INVENTION
Iontophoresis has been utilized for many years for delivering medication into the body of a patient to diagnose and treat various ailments. Another related procedure iontohydrokinesis has been proposed for similar use. For example, iontophoresis has been utilized to deliver Pilocarpine medication to diagnose cystic fibrosis, for the permeation of insulin through the skin, the introduction of steroids into joints to treat arthritis, to anesthetize the eardrum or eye, to treat plantar warts with sodium salicylate, to treat canker sores in the mouth with steroids, to treat
Peyronie's disease (the fibrosing of the penis), and to deliver procainamide across the heart during experimental open chest surgery in dogs.
Iontophoresis involves the transportation of medication in the form of naturally charged or ionic molecules by creating an electric field which acts as a driving force to cause the molecules to advance toward an oppositely charged pole. More particularly, iontophoresis is defined in
Steadman's Medical Dictionary
as the introduction by means of electric current of ions of soluble salts into the tissues of the body for therapeutic purposes; alternatively, the facilitated entry of electrically charged drugs into the surface tissue by application of an electric current. For example, if fluid having charged molecules is placed on a patient's skin and a properly oriented electric field is developed, the fluid will permeate the patient's skin. Where the molecules normally are uncharged, they may be rendered ionic by lowering or raising the pH of the carrying fluid.
The principle is similar for iontohydrokinesis which may be used to deliver uncharged, non-polar molecules of medication: In iontohydrokinesis, water, which has naturally charged molecules and containing noncharged or non-polar molecules of medication, is transported into the tissue of a patient. By subjecting the mixture to an electrical field, the water molecules will carry the uncharged particles with them as they flow from one pole towards the other.
Typically the technique for developing the electric field in Iontophoresis or iontohydrokinesis involves placing both positive and negative electrodes externally of the patient's body or the specific organ that is to be treated. Consequently, the techniques do not lend themselves to targeted, localized treatment of internal body organs.
Generally, when it has been desired to use the procedure locally on an internal organ, it has been necessary to expose the organ surgically. Once the organ is exposed, the electrodes can be placed on opposite sides of the organ, as in the case of the delivery of procainamide to the heart during open chest surgery, discussed above. Such a surgical technique for localized treatment of internal organs has obvious drawbacks such as trauma to the patient and other disadvantages and risks of general surgery. It would be desirable, therefore, to provide a less invasive technique for delivering an effective concentration of medication locally to an internal organ. For example, it would be desirable to deliver concentrations of selected compounds to the wall of an artery as an adjunct to angioplasty, a procedure to enlarge a narrowed (stenosed) portion of an artery by placing a balloon in the stenosis and inflating the balloon to dilate the stenosis, thus improving blood flow through the artery.
A significant problem in angioplasty is the relatively high rate of restenosis (approximately 30%) after performing an initial angioplasty. It has been suggested that restenosis may be controlled or possibly prevented by applying suitable medication to the wall of the artery in the region of the angioplasty. For example, among the factors thought to contribute to incidence of restenosis is the uncontrolled proliferation of smooth muscle cells in the arterial wall, as a consequence of the angioplasty. To that end, it has been proposed that a concentrated dose of suitable medication, such as heparin, be applied to a local region of an artery and forced into the wall of the artery under pressure. A catheter adopted for that purpose is disclosed in U.S. Pat. No. 4,636,195 issued Jan. 13, 1987 to Wolinsky. The Wolinsky patent describes a catheter having a pair of spaced balloons mounted on the distal end of the catheter. The catheter is inserted into the patient's arteries and is navigated to the site of the angioplasty. The catheter is positioned so that the balloons embrace the region of the angioplasty. Suitable medication, such as heparin, then is forced, under pressure, into the space between the inflated balloons to force the medication, under pressure, into the wall of the artery.
It is among the objects of the invention, therefore, to provide a minimally evasive technique for delivering an effective concentration of medication or the like locally to an internal organ of the patient.
SUMMARY OF THE INVENTION
In accordance with the invention, medication or the like is cause to permeate through the tissue of a specific, targeted internal body organ using iontophoresis or iontohydrokinesis techniques. Practising the invention involves placing one or more electrodes externally of and circumferentially about the patient. Another electrode is inserted, as by a catheter, into the target organ or a selected portion of the organ. While an electric field is developed between the internal and external electrodes, medication having charged or polar molecules (iontophoresis) or uncharged molecules coupled with polar molecules, such as water (iontohydrokinesis), then may be delivered directly to the internal organ at a location between the internal and external electrodes. The electric field will cause the medication to permeate radially outwardly from the internal electrode toward the external electrodes thus causing the medication to permeate through the target organ.
One embodiment of the invention adapted for use in treating the wall of a blood vessel or other body lumen employs a balloon catheter which may be placed in the blood vessel and positioned by inflating the balloon in the specific portion to be treated. The catheter carries an internal electrode which may be in the form of an insulated wire extending through the catheter and terminating in the exposed electrode inside the balloon. The balloon which also acts as a drug reservoir has a plurality of regularly spaced minute pores. The interior of the inflatable balloon is in communication with a source of liquid medication by a lumen that extends through the catheter from the proximal end where the lumen can be connected to the liquid source. Medication (ionic or coupled to a charged liquid molecule) is delivered to the balloon and weeps through the minute pores during generation of the electric field. When used adjacent the heart, the electric field may be pulsed on during systole to reduce the risk of inducing cardiac arrhythmia.
It is among the objects of the invention to provide a method of inducing permeation of medication to a selected internal organ or body tissue.
Another object of the invention is to provide a method for treating a body organ with a substantial concentration of medicine or drugs, without systematically exposing the patent to such a concentration.
A further object of the invention is to provide a method and apparatus for permeating the wall of an artery with suitable medication so as to reduce the risk of restenosis after angioplasty as well as a primary treatment of obstructive coronary artery disease.
Another object of the invention is to provide a selective medication delivery technique for internal organs using principles of iontophoresis and iontohydrokinesis.
A further object of the invention is to utilize external electrodes and an electrode located in a targeted body organ for creating an electric field to induce the permeation of medication into the t
Mendez Manuel
Pennie & Edmonds LLP
LandOfFree
Method and apparatus for inducing the permeation of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for inducing the permeation of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for inducing the permeation of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2822052