Method and apparatus for increasing video frame rate

Pulse or digital communications – Bandwidth reduction or expansion – Television or motion video signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S240290, C375S240150

Reexamination Certificate

active

06192079

ABSTRACT:

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND
1. Field
The present invention relates generally to digital imaging and video systems and more specifically to video frame interpolation in video decoding processes.
2. Background Description
Video bit rate control mechanisms employed by digital video encoding and transmission systems (such as video teleconferencing systems, for example) often drop captured frames when encoding video data at low bitrates. This frame skipping may cause the video frame-rate to drop below the frame rate desired to perceive smooth motion, such as, for example, 25-30 frames per second (fps). As a result, low bit rate video may at times look jerky to the user. The jerkiness may be made more apparent by the inherent variability in video frame rates delivered by variable frame rate (VFR) control algorithms. One approach to rendering smooth motion in video transmitted at a low bit rate is to reconstruct or synthesize the dropped frames at the decoder by interpolating between successive encoded video frames. An objective of frame interpolation then is to display the decoded video at a higher frame rate compared with the encoded sequence, and perhaps at the original (i.e., capture) frame rate without having to increase the number of encoded bits. In other applications where the video frame rate is deemed acceptable, it may be possible to take advantage of frame interpolation at the decoder by encoding with a lower target frame rate, using the bits made available to improve spatial quality. Frame interpolation, therefore, is a powerful post-processing technique that may be used to improve perceived video quality and to differentiate decoding platforms in standards-based video telephony applications.
Contemporary low bit rate video compression techniques, such as the International Telecommunication Union-Telecommunication standardization section (ITU-T) H.263+(ITU-T version 2 of Recommendation H.263) standard, are capable of compressing quarter common interchange format (QCIF) video at 10-15 fps at plain old telephone service (POTS) bit-rates (20-24 Kbits/sec), and common interchange format (CIF) video at about 10-15 fps at integrated services digital network (ISDN) bit-rates (84-128 Kbits/sec), at an acceptable video quality. Higher frame rates are typically not used because the overall video quality is degraded due to a lowering of the spatial quality. The decrease in spatial quality occurs when quality is sacrificed in order to make transmission bits available for the increased number of frames. Various frame interpolation techniques employed by a video decoder may be used to boost the frame rate to 20-30 fps for POTS and 20-30 fps for ISDN without increasing the number of encoded bits.
A simple approach to increasing video frame-rate is to insert repeated frames. A problem with this approach is that motion still appears discontinuous in a manner analogous to zero-order hold in data interpolation problems. Another simple approach is to synthesize the skipped frame by linear interpolation between two available adjacent frames. The synthesized frame is obtained by averaging temporally adjacent frames to the dropped frame. Such averaging may result in blurring of the moving regions and may give rise to “double exposure” artifacts when the motion between the frames is moderate to large. Due to the presence of the “double exposure” artifacts, averaging is generally considered to be an unacceptable solution to the frame interpolation problem.
To improve upon these simple techniques, some methods account for the object motion in the original frames. If object motion can be estimated, the frame interpolation process may use the motion information to obtain the motion trajectory of the object through the interpolated frame. If the estimated motion corresponds to the actual motion of objects in the frame, then it may be possible to obtain an accurate estimate of the dropped frame.
The quality of the interpolated frames and the complexity of the frame interpolation process depends at least in part on the particular motion estimation technique used and its ability to accurately predict object motion. In general, the more accurate the motion estimation, the more realistic the interpolation, usually at the expense of additional computational resources. Several frame interpolation techniques have been proposed in the prior art; virtually all of these processes use some type of motion estimation followed by frame synthesis based on the generated motion information and other ancillary information. The differences between these processes are in the details of the specific motion estimation technique used and the additional information used for frame synthesis.
Most of the lower complexity interpolation techniques use block-based motion estimation techniques similar to those used in motion compensated coding. As stated above, such techniques are inherently limited in their ability to capture complex types of object motion. To overcome the limitations of block-based motion estimation, some techniques have been proposed that use optical flow field-based motion. Optical flow field-based techniques are computationally expensive and have found little use in real-time video conferencing applications. As a compromise between the simplistic fixed block motion-based interpolation processes and the computationally intractable optical flow-based interpolation processes, researchers have employed techniques that find motion estimates of triangular patches formed by a triangular tessellation of the video. To better account for deformations, image warping-based techniques have also been utilized. These techniques estimate the interpolated frames by warping objects in one frame into the shape of the other frame.
The area of video frame interpolation remains an active area of research aided by the rapid improvement in computational resources in recent years. What is needed is a process that overcomes the deficiencies of the prior art and effectively increases the video frame rate.
SUMMARY
An embodiment of a method of increasing a video frame rate of a sequence of video frames in accordance with one invention is as follows. The method includes interpolating at least one frame between successive frames of the sequence by applying a spatio-temporal median filter to pixels of the two frames.


REFERENCES:
patent: 5546130 (1996-08-01), Hackett et al.
patent: 5596420 (1997-01-01), Daum
patent: 5621467 (1997-04-01), Chien et al.
patent: 5717463 (1998-02-01), Brailean et al.
patent: 5995154 (1999-11-01), Heimburger
PCT International Search Report for PCT/US99/05436.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for increasing video frame rate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for increasing video frame rate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for increasing video frame rate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612062

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.