Method and apparatus for in situ measurements of corrosion...

Measuring and testing – Vibration – Resonance – frequency – or amplitude study

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S600000, C073S623000

Reexamination Certificate

active

06253615

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to monitoring liquid storage tanks for corrosion. More particularly, the present invention relates to a novel apparatus and method for the in situ monitoring such tanks for thinning (due to corrosion) of the tank bottom, and optionally for uneven settling of the tank, using ultrasonic transducers mounted on a mobile robotic device for use inside liquid filled tanks.
2. Description of the Related Art
With respect to storage tanks.
Large metal storage tanks are used to store a variety of liquids, including especially water, petroleum, and petroleum products. These tanks, which are commonly made from non-stainless steel plates, are subject to corrosion and eventual failure over time. Even tanks that are intended to store only petroleum and petroleum products almost inevitably will have a substantial amount of water in them, greatly aggravating their tendency to oxidize. Thus, it is necessary to periodically inspect these tanks, and to make repairs before such failure. However, because of the enormous size of these tanks, it is expensive and inconvenient to empty a tank each time it is to be inspected.
Typical tanks for petroleum products are made from ¼″ to ½″ thick steel plates welded together. They are commonly hundreds of feet tall and hundreds of feet in diameter. They are usually built above ground, but may also be made at least partially below ground. If such a tank should fail while filled with product, the environmental damage would be staggering.
Complicating the inspection process is the presence of sediment in the tanks. At the bottom of most liquid storage tanks there is a layer of sediment including rust, dirt, debris, petroleum solids, etc. This layer may be anywhere from several millimeters to several feet thick. An effective tank inspection system must either be able to see through this sediment, or must be able to displace the sediment to allow for direct inspection.
Bilges of large ships (e.g., aircraft carriers tankers) like wise must be inspected periodically for corrosion. Many of the same concerns are raised for the inspection of bilges as are raised for the inspection of tanks.
With respect to corrosion monitoring systems.
Available systems for monitoring liquid filled tanks for corrosion suffer from any of several common shortcomings.
One problem that has not been satisfactorily addressed by the art has been the difficulty of using ultrasonic probes to obtain reflection signals from both the top and bottom surfaces of the base plate of a tank. The sediment layer described above scatters ultrasonic waves, dramatically attenuating these waves, and thereby decreasing their ability to penetrate the bottom steel plate. Moreover, ultrasonic waves scattered from the sediment are a source of noise that present systems do not adequately address.
U.S. Pat. No. 5,205,174, issued Apr. 27, 1993 to Silverman et al. (Silverman '174) is representative. This patent teaches the use of ultrasonic transducers for inspecting the bottom surfaces of storage tanks. This system teaches the use of very high frequency ultrasonic pulses (about 15.4 MHz, with a wavelength of 0.0156″). Such high frequency pulses will be so diminished in amplitude that signal detection would be problematic at best. This is particularly true if the ultrasonic pulse is scattered by plate surface that has been roughened by corrosion and attenuated by a layer of sediment. Silverman '174 attempts to mitigate the former problem by including a cleaning system in the apparatus, to remove sediment from the bottom as the apparatus moves along. In principle, this system would work by scrubbing and vacuuming the base free of sediment, irrigating a the base with a stream of clean fluid to remove any remaining sediment, and filtering out the sediment so that it is not returned to the tank. At best, this is a very complicated system that does not address the problem of scattering by a surface that has been roughened by corrosion.
SUMMARY OF THE INVENTION
Accordingly, it is an object of this invention to provide detailed information on tank bottom thickness.
It is a further object of this invention to provide such information even for heavily corroded liquid storage tanks.
It is a further object of the invention to provide such information even for liquid storage tanks having a layer of sediment on the bottom.
These and additional objects of the invention are accomplished by the structures and processes hereinafter described.
An aspect of the present invention is an apparatus for inspecting a base of a liquid filled tank for corrosion, having (a) a housing for use in the liquid filled tank; (b) a set of one or more ultrasonic transducers mounted to the housing,.for directing one or more ultrasonic pulses at the base, where the ultrasonic pulses each have a frequency selected to produce a return signal from the base, and for receiving this return signal; and (c) a data capturing system, for storing information from these return signals. Optional features include a second set of one or more ultrasonic transducers for directing one or more ultrasonic pulses at the liquid/gas interface at a frequency selected to produce a return signal from the liquid/gas interface, a data analysis system, a locomotive system, and a spatial location system.
Another aspect of the invention is a method for inspecting a base of a liquid filled tank for corrosion, having the steps: (a) directing a broadband ultrasonic pulse at the base from an ultrasonic transducer within the tank, where the ultrasonic pulse includes a resonant frequency for the tank base over the range of expected thicknesses for the base; (b) receiving a return signal with the ultrasonic transducer; (c) performing a Fourier analysis on the return signal to generate a frequency domain signal; and (d) determining the thickness of the base from the frequency domain signal.


REFERENCES:
patent: 4512194 (1985-04-01), Beuter
patent: 4912683 (1990-03-01), Katahara et al.
patent: 5205174 (1993-04-01), Silverman et al.
patent: 5456114 (1995-10-01), Liu et al.
patent: 5554808 (1996-09-01), Chiao
patent: 5635645 (1997-06-01), Ottes et al.
patent: 5929349 (1999-07-01), Bass et al.
patent: 5942687 (1999-08-01), Simmonds et al.
patent: 5955669 (1985-04-01), Egami

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for in situ measurements of corrosion... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for in situ measurements of corrosion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for in situ measurements of corrosion... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517097

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.