Method and apparatus for identifying and analyzing vapor...

Measuring and testing – Sampler – sample handling – etc. – With heating or cooling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06354160

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method and apparatus for identifying and analyzing vapor elements, and more particularly to a surface acoustic wave gas chromatographic (SAW/GC) with a preconcentrator collector and a method of using same.
2. Related Art
In the analysis of chemical vapors there is frequently a need to detect extremely small trace amounts of a specific vapor amongst a background of different chemical species. Examples are the detection of contraband aboard the cargo of vessels being inspected by the United States Coast Guard and the detection of leaking explosive or dangerous chemicals at depositories thereof. Automated or portable testing apparatus for this purpose has generally not been available. Further, existing detectors are only able to detect chemical species at concentrations well above their ambient vapor concentrations and thus lack sufficient sensitivity.
Chemical sensors have been developed that physically change upon exposure and contain absorbing polymers selected for their affinity to absorb a group of related chemical species. One type, surface acoustic wave (SAW) delay line sensors, are the most developed and readily available. For example, one commercial supplier is Microsensor System, Inc., Fairfax, Va.
A method and apparatus for using an SAW device to detect a vapor is disclosed by H. Wohltjen in U.S. Pat. No. 4,312,228, issued Jan. 26, 1982. As described therein, the SAW device comprises a piezoelectric element having a surface coated with a polymer material selected to absorb and react with the chemical to be detected. Interaction of the chemical with the material coating of the sensing element alters one or more properties of a surface acoustic wave, and the electrodes on the piezoelectric element detect the altered wave, producing an electrical signal.
Another apparatus and method for detection and identification of chemical vapors is disclosed in U.S. Pat. No. 4,895,017. As described in a plurality of surface acoustic wave (SAW) devices, each coated with a selected polymer material, are exposed to the vapor to be analyzed. In this invention a predicted time constant (or rate) of diffusion into the polymer coating is used to identify the different chemical species. To quantitatively identify specific chemical species present in vapors an array of SAW sensors with different polymer coatings may be exposed and a pattern recognition technique utilized to identify specific species. This is described in a paper entitled “Correlation of Surface Acoustic Wave Device Coating Responses With Solubility Properties and Chemical Structure” by D. S. Ballentine, Jr., S. L. Rose, J. W. Grate, and H. Wohltjen, published in Analytical Chemistry, Vol. 58, p. 3058, December 1986.
A further patent using multiple polymer coated dispersive delay lines is disclosed by J. Haworth in U.S. Pat. No. 5,012,668, issued May 7, 1991. The use of specific absorbant polymers to sensitize the surface of a piezoelectric crystal and induce a phase or amplitude variation in a traveling acoustic wave is common to all of the prior art and this approach severely limits the performance of these vapor detectors. Multiple polymer films dilute the vapor samples and thereby limit the amount of vapor that can be detected by each film. Also, practically any type of film applied to the surface of a piezoelectric crystal introduces noise which reduces sensitivity further.
In view of such problems, the present inventors have proposed an apparatus for performing high speed detection and identification of vapor species. The apparatus includes a temperature programmed vapor preconcentrator for trapping condensable vapor species, a multi-port valve, a temperature programmed chromatographic capillary column, an acoustic wave interferometer for detecting adsorption and desorption of vapor species, a thermoelectric heating and cooling element for controlling the temperature of the acoustic interferometer sensor, and an electronic system controller which is described by the present inventors, i.e., Staples et al., in U.S. Pat. No. 5,289,715, which is hereby incorporated by reference. This apparatus is capable of detecting trace elements with high specificity and sensitivity. The detection can be done near real time.
SUMMARY OF THE INVENTION
It is an object of the present invention to achieve more specificity and selectivity simultaneously with high sensitivity by providing a preconcentrator collector for preconcentrating chemical vapors to be detected and identified before chromatographic analysis.
It is another object of the present invention to provide improved performance over the conventional surface acoustic wave gas chromatography (SAW/GC) technology.
According to a first aspect of the present invention, a preconcentrator collector is provided for collecting and preconcentrating chemical vapors from a sample of ambient air. The preconcentrator collector comprises a body having an inlet and an outlet that is connectable to a sampling pump for taking the sample of ambient air into the body through the inlet. The preconcentrator collector also includes a stack of collector plates made of a material that is easily micromachinable and easily cleanable, such as silicon, silica or fused quartz, and disposed in the body. According to the invention, after the sample is taken, the collector plates trap the chemical vapors in the sample of ambient air and non-trapped vapors exit through the outlet.
According to a second aspect of the present invention, there is provided an apparatus for identifying and analyzing chemical vapors from a sample of ambient air. The apparatus comprises a sampling pump, a preconcentrator collector coupled to the sampling pump for collecting and preconcentrating chemical vapors taken from the sample of ambient air; a separating means for separating individual vapor species in the chemical vapors desorbed from the collector plates of the preconcentrator collector according to their speeds in traveling through the separating means; and a detecting means for detecting and identifying the individual vapor species output from the separating means. The separating means may be made of a metal capillary column heatable by applying an electric current thereto.
According to a third aspect of the present invention, there is provided a method of detecting and identifying chemical vapors from a sample of ambient air. The method comprises the steps of collecting and preconcentrating chemical vapors taken from the sample of ambient air using a preconcentrator collector; separating, using a separating means, individual vapor species in the chemical vapors desorbed from the collector plates of the preconcentrator collector according to their speeds in traveling through the separating means; and detecting and identifying the individual vapor species output from the separating means using a surface acoustic wave gas chromatographic (SAW/GC) detector.


REFERENCES:
patent: 3768300 (1973-10-01), Nemeth
patent: 5162652 (1992-11-01), Cohen et al.
patent: 5289715 (1994-03-01), Staples et al.
patent: 5970803 (1999-10-01), Staples et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for identifying and analyzing vapor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for identifying and analyzing vapor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for identifying and analyzing vapor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.