Method and apparatus for high-voltage switching of...

Miscellaneous active electrical nonlinear devices – circuits – and – Gating – Signal transmission integrity or spurious noise override

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C327S434000, C323S315000

Reexamination Certificate

active

06759888

ABSTRACT:

BACKGROUND OF INVENTION
This invention generally relates to integrated high-voltage switching circuitry. In particular, the invention relates to integrated high-voltage switching circuitry for use in conjunction with an array of elements. Such arrays include, but are not limited to, ultrasound transducer arrays, liquid crystal display pixel arrays, and so forth.
For the purpose of illustration, various embodiments of the invention will be described with reference to an ultrasound transducer array, e.g., the so-called “mosaic annular array”, for use in ultrasound imaging. A mosaic annular array employs the idea of dividing the active aperture of an ultrasound transducer into a mosaic of very small subelements and then forming annular elements from these subelements by interconnecting them with electronic switches. However, the geometry of the array elements is not limited to annular shapes. These array “elements” can be “moved” electronically along the surface of the mosaic array to perform scanning by changing the switch configuration. Other element configurations permit beamsteering, which will provide the ability to acquire volumetric data sets. A configuration of multiple concentric annular elements provides optimal acoustic image quality by matching the element shapes to the acoustic phase fronts. The switches of the present invention are not limited to use in mosaic arrays, but rather could be used with standard ultrasound transducers.
Conventional ultrasound imaging systems comprise an array of ultrasonic transducers that are used to transmit an ultrasound beam and then receive the reflected beam from the object being studied. Such scanning comprises a series of measurements in which the focused ultrasonic wave is transmitted, the system switches to receive mode after a short time interval, and the reflected ultrasonic wave is received, beamformed and processed for display. Typically, transmission and reception are focused in the same direction during each measurement to acquire data from a series of points along an acoustic beam or scan line. The receiver is dynamically focused at a succession of ranges along the scan line as the reflected ultrasonic waves are received.
For ultrasound imaging, the array typically has a multiplicity of transducers arranged in one or more rows and driven with separate voltages. By selecting the time delay (or phase) and amplitude of the applied voltages, the individual transducers in a given row can be controlled to produce ultrasonic waves that combine to form a net ultrasonic wave that travels along a preferred vector direction and is focused in a selected zone along the beam.
The same principles apply when the transducer probe is employed to receive the reflected sound in a receive mode. The voltages produced at the receiving transducers are summed so that the net signal is indicative of the ultrasound reflected from a single focal zone in the object. As with the transmission mode, this focused reception of the ultrasonic energy is achieved by imparting separate time delay (and/or phase shifts) and gains to the signal from each receiving transducer. The time delays are adjusted with increasing depth of the returned signal to provide dynamic focusing on receive.
The quality or resolution of the image formed is partly a function of the number of transducers that respectively constitute the transmit and receive apertures of the transducer array. Accordingly, to achieve high image quality, a large number of transducers is desirable for both two- and three-dimensional imaging applications. The ultrasound transducers are typically located in a hand-held transducer probe that is connected by a flexible cable to an electronics unit that processes the transducer signals and generates ultrasound images. The transducer probe may carry both ultrasound transmit circuitry and ultrasound receive circuitry.
It is known to include high-voltage components in the transmit circuitry to drive the individual ultrasound transducers, while low-voltage, high-density digital logic circuitry is used to provide transmit signals to the high-voltage drivers. The high-voltage drivers typically operate at voltages of up to approximately 100 volts, while the low-voltage logic circuitry has an operating voltage on the order of 5 volts in the case of TTL logic. The high-voltage drivers may be fabricated as discrete components or as integrated circuits, while the low-voltage logic circuitry may be fabricated as a separate integrated circuit or combined with the high-voltage circuitry on a single chip. In addition to transmit circuitry including the high-voltage drivers and low-voltage logic circuitry, the transducer head may include low-noise, low-voltage analog receive circuitry. The low-voltage receive circuitry, like the transmit logic circuitry, typically has an operating voltage on the order of 5 volts, and may be a separate integrated circuit or may be fabricated with the low-voltage transmit logic circuitry as a monolithic integrated circuit.
In order to maximize the number of transducers to achieve high-quality ultrasound images, it is desirable to integrate as much circuitry as possible in as small a volume as possible to reduce the size and complexity of the circuitry, whether the circuitry be located within a transducer probe or in an electronics unit separate therefrom. In addition, some applications, for example, very high-frequency ultrasound imaging, require that transmit circuitry be located as close as possible to the transducers to avoid signal loading by a long cable.
In addition, the integrated circuit must include switches for coupling selected ultrasound transducers of the array with the associated high-voltage drivers during transmit and with associated receivers during receive. One proposed ultrasound transducer array that employs integrated high-voltage driving circuits is a so-called “mosaic annular array”. In a mosaic annular array ultrasound probe there is a need for both matrix and access switches that can withstand the high voltages used on transmit. At the same time, since the array contains upwards of 40,000 switches, low-power operation is an important consideration. In addition, it must be possible to cascade many such switches in series. Finally, the switch should have the ability to retain its state independent of additional logic, thereby simplifying the required digital circuitry and also enabling the use of different transmit and receive apertures.
Currently, ultrasound machines use commercially available high-voltage switch integrated circuits that are generally packaged in groups of eight switches per device. A representative patent for this technology is U.S. Pat. No. 4,595,847. Generally, this device uses high-voltage DMOS switches that are integrated back to back. This is well known in the prior art as a requirement due to the parasitic body diodes that are contained in the devices. [See, for example, “Using the Power MOSFET's Integral Reverse Rectifier,” Fragale et al., Proc. PowerCon 7: Seventh National Solid-State Power Conversion Conference, San Diego, Calif., March 1980.] An important feature of this device is the ability to tolerate high voltages on both of the signal terminals while floating the gate control terminal relative to this voltage. A level shifter is employed to allow the switch to operate in this manner.
An application similar to that of the present invention is driving a liquid crystal display (LCD). The LCD requires high voltages (100 V) but does not require high current. A solution to the LCD driver problem is disclosed by Doutreloigne et al. in a paper entitled “A Versatile Micropower High-Voltage Flat-Panel Display Driver etc.” and also in European Published Patent Application No. 1089433. This device also uses high-voltage DMOS switches; however, it uses a dynamically biased level shifter. The advantage of using a dynamically biased level shifter is that it does not dissipate static power. The technique of dynamic storage of control voltage is well known in the prior art and is most ofte

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for high-voltage switching of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for high-voltage switching of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for high-voltage switching of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3204676

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.