Method and apparatus for hierarchical storage of data for...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000, C707S793000

Reexamination Certificate

active

06266679

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to data management, and, more particularly, to a method and means for hierarchical storage of data to achieve efficient archiving and retrieval of data.
2. Description of the Related Art
The technology explosion in the manufacturing industry has resulted in many new and innovative manufacturing processes. Today's manufacturing processes, particularly semiconductor manufacturing processes, call for a large number of important steps. These process steps are usually vital; therefore, a large number of data files are generated to properly document the process steps.
The manufacture of semiconductor devices requires a number of discrete process steps to create a packaged semiconductor device from raw semiconductor material. The various processes, from the initial melt and refinement of the semiconductor material, the slicing of the semiconductor crystal into individual wafers, the fabrication stages (etching, doping, ion implanting, or the like), to the packaging and final testing of the completed device, are so different from one another and specialized that the processes may be performed in different facilities in remote regions of the globe.
For example, the process of growing and refining a large semiconductor crystal (e.g., Si, GaAs, or the like) may be performed by a foundry specializing in such crystal growth techniques. The resultant crystals may then be sold directly to a semiconductor manufacturer, either as large crystals, or as wafers sliced from a large crystal.
The semiconductor manufacturer may then slice the semiconductor crystal into wafers, if the semiconductor material is not already in wafer format. The semiconductor manufacturer then fabricates semiconductor circuit devices (e.g., microprocessor, DRAM, ASIC, or the like) on individual wafers, usually forming a number of devices on each wafer. The individual fabrication (or “FAB”) processes include photolithography, ion implantation, and other associated FAB processes known in the art. Typically, the resultant semiconductor device is tested on the wafer during and after the FAB process.
Once the semiconductor devices have been fabricated and tested on the wafer, the wafer is sliced up into individual semiconductor chips and packaged. The packaging process includes mounting and wire-bonding the individual chips to chip carriers (e.g., PLCCs, DIPs, CER-DIPs, surface mount carriers, or the like) and final testing of the resultant packaged semiconductor device. This packaging process is fairly labor intensive, and thus it may be desirable to perform the mounting, wire-bonding, and final testing at an offshore facility where labor rates may be cheaper. Once completed, the packaged semiconductor device may again be tested, and then labeled and shipped to customers through a distribution system.
One problem that arises in current manufacturing-data management techniques, is that the various processes take place at different discrete locations. Thus, it is difficult to track a semiconductor device through the fabrication process from single crystal to finished product. Such tracking may be useful for quality control purposes to determine the causes of product problems that may result in low yields or circuit defects. Tracking data files that correspond to all of the steps in the fabrication process, and managing those data files, is a very difficult task.
Another problem with current methods of storing data files is that a large amount of resources is required to store, archive, and retrieve data. A more organized manner of performing storage management of data would greatly improve manufacturing processes. Large sections of data could be stored, archived, and retrieved in an efficient manner with such a storage management vehicle. Better data management would improve manufacturing capabilities.
The present invention is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a method is provided for archiving and retrieving data. At least one top-level directory is created to store files. A file-location database is created to track stored files in the top level directory. Files from a primary database are received. Files received from the database are archived into the top level directory, in response to receiving files from a primary database. An immediate backup of the archived files is created. A long-term backup of the archived files is created.
In another aspect of the present invention, a system is provided for archiving data. The system provided by the present invention comprises; a network for transmitting and receiving data; at least one input system, coupled to the network, for inputting data in at least a first format; a reformatter, coupled to the network, for receiving the data and reformatting the data into a predetermined format to produce reformatted data; a primary database, coupled to the network, for storing the reformatted data; a loader, coupled to the primary database, for loading the reformatted data into the primary database; at least one client workstation, coupled to the network, for receiving data search requests; a front end server, coupled to the network, for receiving the primary database search requests and processing the search requests, querying the primary database, receiving reformatted data from the primary database, and outputting the reformatted data; at least one data archiver, coupled to the primary database for archiving at least a portion of the data stored in the primary database according to a predetermined archiving algorithm, and for transferring archived data to an archive storage media; means for creating at least one top-level directory to archive the data stored in the primary database; means for creating at least one subdirectory within the top level directory; means for creating a file-location database to track stored files in the subdirectory and the top level directory; means for receiving the data stored in the primary database, to archive the data the top level directory; means for executing an archiving process to archive the data stored in the primary database, in response to receiving files from a primary database; means for creating an immediate backup of the archived data; and means for creating a long-term backup of the archived data.


REFERENCES:
patent: 5034914 (1991-07-01), Osterlund
patent: 5276865 (1994-01-01), Thorpe
patent: 5423034 (1995-06-01), Cohen-Levy et al.
patent: 5625816 (1997-04-01), Burdick et al.
patent: 5732131 (1998-03-01), Nimmagadda et al.
patent: 5758155 (1998-05-01), Circenis
patent: 5764972 (1998-06-01), Crouse et al.
patent: 5778395 (1998-07-01), Whiting et al.
patent: 5829047 (1998-10-01), Jacks et al.
patent: 5848408 (1998-12-01), Jakobsson et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for hierarchical storage of data for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for hierarchical storage of data for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for hierarchical storage of data for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.