Method and apparatus for heating inflammed tissue

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001420

Reexamination Certificate

active

06451044

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to methods for treating inflammed tissue. More particularly, the invention relates to stents for treating vessels and other annular organs that are capable of being selectively heated by an external source of radiation and of transferring that heat to surrounding tissue. The invention also relates to methods of making and using such heating stents to apply low-level heat to inflammed tissue
2. Description of Related Art
Coronary artery disease is a leading cause of death in industrialized countries. It is manifested by athersclerotic plaques, which are thickened areas in vessel walls. A plaque is an accumulation of cholesterol, proliferating smooth muscle cells and inflammatory cells covered by cellular secretions of collagen that form a cap over the plaque in the vessel wall. Macrophages migrate into and accumulate in a plaque causing inflammation. Inflamed plaques are most susceptible to ruptures and the formation of blood clots. Falk, E. (1995).
Atherosclerotic plaques are thought to develop in response to irritation or biochemical damage of the endothelial cells that line blood vessel walls. Agents that are known to damage these cells include cigarette smoke, high serum cholesterol (especially in the form of oxidized low density lipoprotein), hemodynamic alterations (such as those found at vessel branch points), some viruses (herpes simplex, cytomegalovirus) or bacteria (e.g., Chlamydia), hypertension, and some plasma hormones (including angiotensisn II, norepinephrine) and homocysteine. Atherosclerotic plaques grow slowly over many years in response to the cumulative injury of endothelial cells. Ross (1993), Berliner (1995).
Typically, several dozen plaques are found in arteries afflicted with this disease. It is the rupture of these plaques that brings about the terminal stage of the disease. The rupture causes a large thrombus (blood clot) to form on the inside of the artery, which may completely occlude the blood flow through the artery, thereby injuring the heart or brain. Falk, E. (1995).
In most cases of terminal coronary artery disease, only one of several plaques ruptures. Rupture typically is caused by inflammatory cells, primarily macrophages, that lay beneath the surface collagen layer of the plaques. These cells release enzymes that tend to degrade the cap. Once a plaque ruptures, blood clots are formed and it is these clots that are believed to be responsible for over one half of all heart attacks and stokes. Falk, E. (1995); Buja (1994).
Techniques have been developed to identify those plaques that are most likely to rupture because of inflammation. See U.S. patent application Ser. No. 08/717,449, which is specifically incorporated by reference herein. The most common treatment for these plaques is percutaneous transluminal coronary angioplasty (PTCA), e.g., balloon angioplasty. Frequently, however, injury to the vessel wall and disruption of the plaque core occur during restoration of vessel patency. The rapid proliferation of smooth muscle cells in response to damage and inflammation induced in the intimal and medial layers of the vessel wall occurs as part of the body's attempt to heal the “wound” to the vessel. This leads to neointimization and remodeling of the vessel wall and restenosis. Restenosis is defined as the reclosure of a previously stenosed and subsequently dilated peripheral or coronary vessel. Blood clots may form as a result of the spillage of plaque contents and due to triggering of the natural clot-forming cascade of the blood, further contributing to restenosis at the treatment site. Within weeks to months after PTCA, many individuals develop restenosis at the angioplasty site. Various approaches to balloon catheter angioplasty have been introduced, however each has failed at preventing post-angioplasty restenosis. Some of these include atherectomy devices, laser and thermal ablative devices and stents, examples of which are well known by those working in the field.
Apoptosis
It is clear that in many cases balloon angioplasty causes cellular injury and only temporarily eliminates the danger from an inflamed plaque until the advent of a secondary inflammatory response. Casscells (1994).
It has been shown that macrophages have a life span of only about a week or two in the vessel wall. Katsuda (1993). Typically, monocytes enter the atherosclerotic plaque, divide once, and contribute to plaque development by their ability to oxidize low density lipoprotein cholesterol and to release factors which cause smooth muscle proliferation and angiogenesis. The cells then undergo apoptosis, which is an active process of programmed cell death. This process differs from necrosis in that apoptosis requires the expenditure of energy, and the synthesis of new RNA and proteins in all but the inflammatory cells, the active cleavage of DNA and the shrinkage and involution of the cell with very little inflammation. Steller (1995); Nagata (1995); Thompson (1995); Vaux (1996).
Apoptosis is a form of programmed cell death in which the dying cells retain membrane integrity and are rapidly phagocytosed and digested by macrophages or by neighboring cells. It occurs by means of an intrinsic cellular suicide program that results in DNA fragmentation and nuclear and cytoplasmic condensation. The dead cells are rapidly cleared without leaking their contents and therefore little inflammatory reaction follows. It can be induced by the withdrawal of growth factors and to some extent by factors which can also cause necrosis such as extreme lack of oxygen or glucose, heat, oxidation and other physical factors.
Previously no method was known for selectively inducing apoptosis in macrophages or other inflammatory cells in a blood vessel without also inducing apoptosis in beneficial endothelial cells. Known methods for inducing apoptosis were systemic, including treatments with chemicals and elevated temperatures. Such methods are not useful as therapeutic methods because of the risk that apoptosis will develop in healthy tissue.
A number of studies have shown that heat can induce programmed cell death. Kunkel (1986) have found that indomethacin inhibits macrophage synthesis of prostaglandin but enhances macrophage production of TNF-I, which suggests that heating may have advantages over indomethacin as an anti-inflammatory treatment. Preventing the synthesis of prostaglandin, which serve as feedback inhibitors of macrophage function, limits the anti-inflammatory utility of indomethacin and presumably other inhibitors of cyclooxygenase. Field and Morris (1983) surveyed many cell types and found that the time needed to kill cells at 43° C. varied from four minutes in mouse testis, to 32 minutes in rat tumor in vivo, to 37 minutes for mouse jejunum, to 75 minutes for rat skin, 210 minutes for mouse skin and 850 minutes for pig skin. Numerous other cell types were also studied. They observed that, above 42.5° C., an increase of 1° C. produces a similar effect as doubling the duration of heat exposure. Wike-Hooly (1984) found that a low pH enhanced hyperthermic cell killing, as did a low glucose or insulin exposure and that nitroprusside also increased the cell mortality caused by hyperthermia. Raaphorst (1985) and Belli (1988) studied Chinese hamster lung fibroblasts and found that 45° C. heat and radiation were synergistic in cell killing. Raaphorst (1985) also found S-phase to be heat-sensitive and least radiosensitive, while in G1 and G2 the opposite was true. Klostergard (1989) found that cytotoxicity of macrophages was decreased by heating to 40.5° C. for 60 minutes. Westra and Dewey (1971) found that in CHO cells S phase was more sensitive to heating to 45.5° C. than was G1 phase. M phase was intermediate. In contrast, radiation killed cells preferentially in phases G1 and M1. Fifty percent of asynchronous (cycling) CHO cells were killed by a 20 minute heat treatment at 43.5° C. Freeman (1980) fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for heating inflammed tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for heating inflammed tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for heating inflammed tissue will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2861625

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.