Method and apparatus for growth of single-crystal rare-earth...

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S013000

Reexamination Certificate

active

07135699

ABSTRACT:
Structure and method for growing crystalline superlattice rare earth oxides, rare earth nitrides and rare earth phosphides and ternary rare-earth compounds are disclosed. The structure includes a superlattice having a plurality of layers that forming a plurality of repeating units. At least one the layers in the repeating unit is an active layer with at least one species of rare earth ion.

REFERENCES:
patent: 4394673 (1983-07-01), Thompson et al.
patent: 4618381 (1986-10-01), Sato et al.
patent: 4693543 (1987-09-01), Matsumura et al.
patent: 4715672 (1987-12-01), Duguay et al.
patent: 4787691 (1988-11-01), Lorenzo et al.
patent: 4789642 (1988-12-01), Lorenzo et al.
patent: 4959694 (1990-09-01), Gell
patent: 4997246 (1991-03-01), May et al.
patent: 5002350 (1991-03-01), Dragone
patent: 5033816 (1991-07-01), Blondeau et al.
patent: 5039190 (1991-08-01), Blonder et al.
patent: 5107538 (1992-04-01), Benton et al.
patent: 5119460 (1992-06-01), Bruce et al.
patent: 5181211 (1993-01-01), Burnham et al.
patent: 5262656 (1993-11-01), Blondeau et al.
patent: 5282260 (1994-01-01), Buchal et al.
patent: 5351146 (1994-09-01), Chan et al.
patent: 5355237 (1994-10-01), Lang et al.
patent: 5357591 (1994-10-01), Jiang et al.
patent: 5468684 (1995-11-01), Yoshimori et al.
patent: 5473174 (1995-12-01), Ohsawa
patent: 5534079 (1996-07-01), Beach
patent: 5594750 (1997-01-01), Zhang et al.
patent: 5634973 (1997-06-01), Cabral, Jr. et al.
patent: 5646425 (1997-07-01), Beach
patent: 5647038 (1997-07-01), Minden et al.
patent: 5667905 (1997-09-01), Campisano et al.
patent: 5719077 (1998-02-01), Chakrabarti et al.
patent: 5719416 (1998-02-01), Yoshimori et al.
patent: 5841931 (1998-11-01), Foresi et al.
patent: 5852346 (1998-12-01), Komoda et al.
patent: 5917195 (1999-06-01), Brown
patent: 5920078 (1999-07-01), Frey
patent: 5942050 (1999-08-01), Green et al.
patent: 6058131 (2000-05-01), Pan
patent: 6069908 (2000-05-01), Yuen et al.
patent: 6403975 (2002-06-01), Brunner et al.
patent: 6456423 (2002-09-01), Nayfeh et al.
patent: 6846509 (2005-01-01), Chen et al.
patent: 2002/0017657 (2002-02-01), Coffa et al.
patent: 2002/0096675 (2002-07-01), Cho et al.
patent: 2002/0117673 (2002-08-01), Moon
patent: 2002/0131663 (2002-09-01), Marks et al.
patent: 2002/0155673 (2002-10-01), Camalleri et al.
patent: 2004/0106285 (2004-06-01), Zacharias
patent: 0 474 447 (1992-03-01), None
patent: 0 517 440 (1992-12-01), None
patent: 0 578 407 (1994-01-01), None
patent: 05283743 (1993-10-01), None
Favennec, et al. “Optical Activation of ER Implanted in Silicon by Oxygen Impurities.” Japanese Journal of Applied Physics, vol. 29, No. 4, Apr. 1990, pp. L 524-L526.
Ennen, et al. “1.54 um Luminescence of Erbium-Implanted III-V Semiconductors and Silicon.” Applied Physics Lett. 43 (10), Nov. 15, 1983, pp. 943-945.
Shin, et al. “Controlling the quantum effects and erbium-carrier interaction using Si/SiO2 superlattices.” Proc. SPIE vol. 4282, pp. 142-152.
Han, et al. “Control of Location and Carrier-Interaction of Erbium Using Erbium-Doped Si/SiO2 Superlattice.” Thin Films for Optical Waveguide Devices Symposium Z Dec. 1999.
Orlov, et al. “Comparative Analysis of Light Emitting Properties of Si: Er and Ge/Si Ge Expitaxial Structures Obtained by MBE Method.” Solid State Phenomena vols. 69-70, 1999.
Pool, Rebecca. “Scientists Predict Silicon Debut.” OLE, Jan. 2002, pp. 31.
Huang, et al. “Field-Induced Waveguides and Their Application to Modulators.” IEEE Journal of Quantum Electronics, vol. 29, No. 4, Apr. 1993, pp. 1131-1143.
Mendoza-Alvarez, et al. “Analysis of Depletion Edge Translation Lightwave Modulators.” Journal of Lightwave Technology., vol. 6, No. 6, Jun. 1998, pp. 793-807.
Huang, et al. “Depletion Edge Translation Waveguide Crossing Optical Switch.” IEEE Photonics Technology Letters, vol. 1, No. 7, Jul. 1989, pp. 168-170.
Tomomi,et al. “Reflection-type 2×2 optical waveguide switch using the Goos-Hanchen shift effect.” Applied Physics Letter, vol. 76, No. 20, May 15, 2000, pp. 2841-2843.
Bieber, et al. “Optical Switching in a Metal-Semiconductor-Metal Waveguide Structure.” Applied Physics Letter, 66 (25), Jun. 19, 1995, pp. 3401-3403.
Jalali, et al. “Advances in Silicon-on-Insulator Optoelectronics.” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, No. 6, Nov./Dec. 1998, pp. 938-947.
Benaissa, et al. “IC Compatible Optical Coupling Techniques for Integration of Arrow with Photodetector.” Journal of Lightwave Technology, vol. 16, No. 8, Aug. 1998, pp. 1423-1432.
Baba, et al. “Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides-Numerical Results and Analytical Expressions.” IEEE Journal of Quantum Electronics, vol. 28, No. 7, Jul. 1992, pp. 1669-1700.
Mao, et al. “An Arrow Optical Wavelength Filter: Design and Analysis.” Journal of Lightwave Technology, vol. 11, No. 7, Jul. 1993, pp. 1183-1188.
Delisle, et al. “High Finesse Wavelength Selective Coupler Based on ARROW'S.” IEEE Photonics Technology Letters, vol. 8., No. 6, Jun. 1996, pp. 791-793.
Chu, et al. “Compact ARROW-Type Vertical Coupler Filter.” IEEE Photonics Technology Letters, vol. 8, No. 11, Nov. 1996, pp. 1492-1494.
Kubica, et al. “A Rigorous Design Method for Antiresonant Reflecting Optical Waveguides.” IEEE Photonics Technology Letters, vol. 6, No. 12, Dec. 1994, pp. 1460-1462.
Chu, et al. “ARROW-Type Vertical Coupler Filter: Design and Fabrication.” Journal of Lightwave Technology, vol. 17, No. 4, Apr. 1999, pp. 652-658.
Benaissa, et al. “IC Compatible techniques for coupling light from arrow to integrated photodiodes.” The Institution of Electronic Engineers, 1994, pp. 11/1-11/6.
Mao, et al. “In-line fiber-optic filter using GaAs ARROW waveguide.” CLEO'98, May 7, 1998 (Thursday Afternoon), pp. 424-425.
Goh, et al. “Estimation of Waveguide Phase Error in Silica-Based Waveguides.” Journal of Lightwave Technology, vol. 15, No.11, Nov. 1997, pp. 2107-2113.
Maru, et al. “Influence of statistical amplitude and phase errors on spectral response of arrayed-waveguide grating.” Electronics Letters, vol. 35, No. 22, Oct. 28, 1999, pp. 1967-1969.
Tsuda, et al. “Second- and Third-Order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating.” IEEE Photonics Technology Letters, vol. 11, No. 5, May 1999, pp. 569-571.
Baba, et al. “New Polarization-Insensitive Antiresonant Reflecting Optical Waveguide (ARROW-B).” IEEE Photonics Technology Letters, vol. 1, No. 8, Aug. 1989, pp. 232-234.
Pezeshki, et al. “Wavelength-selective waveguide photodetectors in silicon-on-insulator.” Appl. Phys. Letter, 68(6), Feb. 5, 1996, pp. 741-743.
Khan, et al. “Mode-Coupling Analysis of Multipole Symmetric Resonant Add/Drop Filters.” IEEE Journal of Quantum Electronics, vol. 35, No. 10, Oct. 1999, pp. 1451-1460.
Chu, et al. “Cascaded Microring Resonators for Crosstalk Reduction and Spectrum Cleanup in Add-Drop Filters.” IEEE Photonics Technology Letters, vol. 11, No. 11, Nov. 1999, pp. 1423-1425.
Lee, et al. “Analysis of N×N Passive Optical Star Coupler Based on the Normal Modes of N Input Waveguides.” Journal of Lightwave Technology, vol. 10, No. 12, Dec. 1992, pp. 1800-1806.
Sayah, et al. “Realisation of Silicon Based Dielectrics Anti-Resonant Reflecting Optical Waveguide (ARROW) on InP by Photochemical Deposition.” Tup-D9, pp. 315-318.
Kaneko, et al. “Design and Applications of Silica-Based Planar Lightwave Circuits.” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 5, Sep./Oct. 1999.
Cutolo, et al. “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Low Single-Mode SOI Wavegide.” Journal of Lightwave Technology, vol.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for growth of single-crystal rare-earth... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for growth of single-crystal rare-earth..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for growth of single-crystal rare-earth... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3656463

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.