Method and apparatus for generating pulses using dynamic...

Coded data generation or conversion – Analog to or from digital conversion – Analog to digital conversion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S133000, C341S111000

Reexamination Certificate

active

06498578

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to techniques for generating pulses and more specifically to techniques for converting arbitrary analog waveforms to produce sequences of pulses.
Free running oscillations based on the relaxation oscillator approach are known. Many circuit configurations are possible. One example is a circuit comprising a tunnel diode connected in series with an inductor and a constant voltage source, to produce a periodic square waveform that has a constant frequency. U.S. Pat. No. 3,312,911 discloses a tunnel diode relaxation oscillator that produces a relaxation oscillation with the desired polarity. An op-amp based relaxation oscillator is described in U.S. Pat. No. 3,967,210. This oscillator is capable of producing oscillations in several selectable modes at different frequencies. All of these oscillators can be categorized as a free running oscillator.
The method and apparatus for a communication system disclosed in U.S. application Ser. No. 09/429,519 uses a controlled relaxation oscillator. In that application, the circuit is able to generate a number of desired oscillations followed by a substantially instant cessation of oscillatory behavior in response to an input waveform. Similarly, the circuit can also respond substantially instantly to yield a desired oscillatory behavior substantially without transients. However, the circuit disclosed in that application has reactive input impedance. The circuit is therefore frequency dependent which is not desirable under some conditions. In the U.S. application Ser. No. 09/805,845, a circuit is disclosed that has similar transfer function properties and which also possesses a resistive input impedance.
The approaches disclosed in the foregoing co-pending and co-owned application produce oscillatory behavior (i.e. generate groups of one or more pulses) when the operating point of the circuit is forced to the unstable region portion of the transfer characteristic. The oscillatory behavior ceases by forcing the operating point to a stable operating region portion of the transfer characteristic. However, the operating point of the disclosed circuits is determined solely by the input voltage. In some applications, it is desired to have the additional freedom to control the operating point via an additional input. As an example, an additional input that serves as an enable/disable control might be useful. Hence, there is a need for a circuit having transfer function characteristics that can be controlled dynamically.
SUMMARY OF THE INVENTION
In accordance with the present invention, producing pulses from analog waveforms includes providing a circuit having a transfer function characterized by having a stable operating region and an unstable operating region. The circuit is made to operate at a first operating point. The transfer function is adjusted by application of a signal to the circuit. In response, the circuit is made to operate at a second operating point. Either or both operating points can produce oscillatory behavior in the circuit. In one embodiment of the invention, the oscillatory behavior manifests itself as the production of groups of one or more pulses.
Further in accordance with the invention, producing information from an analog signal includes the foregoing to produce groups of one or more pulses. A decoding is made of the pulses to produce symbols representing the information.


REFERENCES:
patent: 3209282 (1965-09-01), Schnitzler
patent: 3239832 (1966-03-01), Renard
patent: 3246256 (1966-04-01), Sommers, Jr.
patent: 3303350 (1967-02-01), Neff et al.
patent: 3312911 (1967-04-01), De Boer
patent: 3387298 (1968-06-01), Kruy
patent: 3527949 (1970-09-01), Huth
patent: 3571753 (1971-03-01), Saunders
patent: 3755696 (1973-08-01), Nicholson et al.
patent: 3761621 (1973-09-01), Vollmeyer et al.
patent: 3846717 (1974-11-01), Fleming
patent: 3967210 (1976-06-01), Aumann
patent: 4028562 (1977-06-01), Zuleeg
patent: 4037252 (1977-07-01), Janssen
patent: 4365212 (1982-12-01), Gentile et al.
patent: 4425647 (1984-01-01), Collins et al.
patent: 4459591 (1984-07-01), Haubner et al.
patent: 4560949 (1985-12-01), Young
patent: 4599549 (1986-07-01), Mutoh et al.
patent: 4743906 (1988-05-01), Fullerton
patent: 4862160 (1989-08-01), Ekchian et al.
patent: 5012244 (1991-04-01), Wellard et al.
patent: 5107264 (1992-04-01), Novof
patent: 5170274 (1992-12-01), Kuwata et al.
patent: 5337054 (1994-08-01), Ross et al.
patent: 5339053 (1994-08-01), Lux et al.
patent: 5532641 (1996-07-01), Balasubramanian et al.
patent: 5764702 (1998-06-01), Caiaffa
patent: 5777507 (1998-07-01), Kaminishi et al.
patent: 5789992 (1998-08-01), Moon
patent: 5812081 (1998-09-01), Fullerton
patent: 5832035 (1998-11-01), Fullerton
patent: 5892701 (1999-04-01), Huang et al.
patent: 5901172 (1999-05-01), Fontana et al.
patent: 6023672 (2000-02-01), Ozawa
patent: 6044113 (2000-03-01), Oltean
patent: 6060932 (2000-05-01), Devin
patent: 6087904 (2000-07-01), Wen
patent: 6259390 (2001-07-01), Joe
patent: 6275544 (2001-08-01), Aiello et al.
patent: 6292067 (2001-09-01), Sasabata et al.
patent: 94 855 (1973-01-01), None
patent: 2459531 (1976-07-01), None
patent: 2602794 (1977-07-01), None
patent: 19809334 (1999-09-01), None
patent: 1 438 262 (1966-07-01), None
patent: 1036328 (1966-07-01), None
patent: 11074766 (1999-03-01), None
Abell, E., “Gated Oscillator Emulates a Flip-Flop”, EDN Access, pp. 1-2 Mar. 16, 1995.
Gallerani, A., “Oscillator Meets Three Requirements”, EDN Access, pp. 119-120, Dec. 3, 1998.
L. Goras et al., “On Linear Inductance- and Capacitance-Time Conversions Using NIC-Type Configuration,” IEEE Tranactions on Industrial Electronics, vol. 40, No. 5 pp. 529-531 (Oct. 1993).
V. H. Jakubaschk, “das Gro&bgr;e Elektronikbastelbuch,” Deutscher Militäverlag, Leipzig, pp. 206-209 (1968).
James P. Keener, Analog Circuitry for the van der Pol and FitzHugh—Nagumo Equations, IEEE 1983, pp. 1011-1015.
U. Tietze et al., “Halbleiter-Schaltungstechnik, Fünfte, überarbeitete Auflage,” Springer-Verlag, Berlin Heidelberg, New York, pp. 255-258 (1980).
Patarasen, S. et al., Maximum-Likelihood Symbol Synchronization and Detection of OPPM Sequences, IEEE Transactions on Communications, New York, US, Jun. 1994, pp. 9, vol. 42, No. 6.
Sen et al., Integration of GaAs/A1As Resonant Tunneling Diodes for Digital and Analog Applications with Reduced Circuit Complexity, Oct. 13-16, 1987.
D. Wang et al., “Image Segmentation Based on Oscillatory Correlation,” Neural Computation, vol. 9, pp. 805-836 (1997).
Gang Li et al., “Performance of a Ratio-Threshold Diversity Combining Scheme in FFH/FSK Spread Spectrum Systems in Partial Band Noise Interference,” Department of Electrical and Computer Engineering, and Communication Research Centre, IEEE 1992, pp. 0672-0676.
Gang Li et al., “Maximum-Likelihood Diversity Combining in Partial-Band Noise Interference Channel,” Department of Electrical and Computer Engineering, and Communication Research Centre, IEEE 1993, pp. 507-511.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for generating pulses using dynamic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for generating pulses using dynamic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for generating pulses using dynamic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2971366

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.