Method and apparatus for generating hydrogen inside of a...

Chemistry: electrical current producing apparatus – product – and – Having magnetic field feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S010000, C429S006000

Reexamination Certificate

active

06727012

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to fuel cells. More particularly, the present invention relates to fuel cells provided with a hydrogen generation system.
BACKGROUND OF THE INVENTION
Fuel cells are seen as a promising alternative to traditional power generation technologies due to their low emissions, high efficiency and ease of operation. Fuel cells operate to convert chemical energy to electrical energy. Proton exchange membrane (PEM) fuel cells comprise an anode (oxidizing electrode), a cathode (reducing electrode), and a selective electrolytic membrane disposed between the two electrodes. In a catalyzed reaction, a fuel such as hydrogen, is oxidized at the anode to form cations (protons) and electrons. The ion exchange membrane facilitates the migration of protons from the anode to the cathode. The electrons cannot pass through the membrane, and are forced to flow through an external circuit, thus providing electrical current. At the cathode, oxygen reacts at the catalyst layer, with electrons returned from the electrical circuit, to form anions. The anions formed at the cathode react with the protons that have crossed the membrane to form liquid water as the reaction product. Additionally, since the reactions are exothermic, heat is generated within the fuel cell. The half-cell reactions at the two electrodes are as follows:
H
2
→2H++2
e−
  (1)
1/2O
2
+2H++2
e
−→H
2
O+HEAT  (2)
In practice, fuel cells are not operated as single units. Rather, fuel cells are connected in series, stacked one on top of the other, or placed side by side. A series of fuel cells, referred to as fuel cell stack, is normally enclosed in a housing. The fuel and oxidant are directed through manifolds to the electrodes, while cooling is provided either by the reactants or by a separate cooling medium. Also within the stack are current collectors, cell-to-cell seals and insulation. Piping and various instruments are externally connected to the fuel cell stack for supplying and controlling the fluid streams in the system. The stack, housing, and associated hardware make up the fuel cell unit.
Various types of fuel cells have been developed employing a broad range of reactants. For example, proton exchange membrane (PEM) fuel cells are one of the most promising replacements for traditional power generation systems. PEM fuel cells comprise an anode, a cathode, and a proton exchange membrane disposed between the two electrodes. Preferably, PEM fuel cells are fuelled by pure hydrogen gas, as it is electrochemically reactive and the by-products of the reaction are water and heat. However, these fuel cells require external supply and storage devices for the hydrogen. Hydrogen can be difficult to store and handle, particularly in non-stationary applications. Conventional methods of storing hydrogen include liquid hydrogen, compressed gas cylinders, dehydrogenation of compounds, chemical adsorption into metal alloys, and chemical storage as hydrides. However, such storage systems tend to be hazardous, dangerous, expensive and bulky.
Other types of fuels have been proposed, including hydrogen-containing materials such as methanol. In some conventional systems, external reformers are employed to liberate hydrogen from the hydrogen-containing materials. The liberated hydrogen is then introduced into the fuel cell. However, the use of external reformers complicates the construction of the system, and results in a substantial loss in system efficiency. In other conventional systems, hydrogen-containing fuels may be supplied directly to the fuel cells, i.e. supplied unreformed to the fuel cell anodes. Once inside the fuel cell, the hydrogen-containing fuel may be directly oxidized or internally reformed, and subsequently oxidized to generate electricity. This occurs in some high temperature fuel cells, such as solid oxide fuel cells. These systems do not require a separate external reformer, and utilize fuels that are easier to handle than hydrogen. However, pure hydrogen typically offers better performance, and is generally more environmentally friendly than most hydrogen-containing fuels. Moreover, high temperature fuel cells operate at a minimum temperature of 600° C. These high temperatures are required to reform the hydrogen-containing materials prior to carrying out the fuel cell reactions. As such, hydrogen-containing materials are generally unsuitable for conventional PEM fuel cells that typically operate around 80° C.
Another method of generating and storing hydrogen has been recently proposed. This method uses a chemical hydride solution, such as NaBH
4
, as a hydrogen storage medium. Generally, chemical hydride reacts with water in the presence of a catalyst to generate hydrogen, as shown in the equation below:
NaBH
4
+2H
2
O→4H
2
+NaBO
2
+HEAT  (3)
The chemical hydride solution acts as both the hydrogen carrier and the storage medium. Ruthenium, Cobalt, Platinum or any alloys thereof may be used to catalyze the above reaction. It is noted that hydrogen is liberated from both the borohydride solution and the water. The borohydride solution is relatively cheap, and is much easier and safer to handle and transport than liquid or pressurized hydrogen. As a result, there are some advantages associated with using borohydride as a method of storing hydrogen as a fuel for use in fuel cells.
There are several conventional hydrogen generation systems that utilize chemical hydrides. One type of hydrogen generation system comprises a closed vessel for mixing chemical hydride powder together with water. The water is introduced into the vessel through an inlet. The vessel contains a mechanical stirring device to ensure adequate contact between the powder and the water, and to prevent the powder from clumping. The hydrogen gas is removed through an outlet in the vessel, and is supplied directly to the fuel cell. These systems tend to be inefficient since the stirring mechanism consumes energy, and increases the overall weight and complexity of the system. Furthermore, the noise generated by the stirring is undesirable. In addition, the reaction rate tends to be low, making the hydrogen generation unpredictable and thus hard to control. The systems also tend to be large and cumbersome.
Another type of hydrogen generation system employs a chemical hydride solution. In this system, an aqueous chemical hydride solution is introduced into a catalyst bed to generate hydrogen for use in fuel cells. However, these chemical hydride systems still require a separate hydrogen generation subsystem for generating and supplying hydrogen to the fuel cell system. As such, the systems tend to be complex, costly, and inefficient.
There remains a need for a fuel cell system that utilizes pure hydrogen and that contains a compact and simple subsystem for generating the hydrogen. More particularly, such a fuel cell system should desirably be equipped to liberate hydrogen from a chemical hydride solution in view of its known properties, and subsequently utilize the pure hydrogen in a fuel cell reaction.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a fuel cell stack, comprising:
at least one fuel cell comprising an anode with a fuel inlet port for a hydrogen containing fuel, a cathode with an oxidant inlet port;
at least one chamber for a solution comprising a solvent and at least one chemical hydride dissolved therein, and having a chamber inlet and a chamber outlet for the solution and a catalyst within at least one chamber for catalyzing reaction of the solution to generate hydrogen.
The solution used in the system can comprise a solvent comprising water and an at least one chemical hydride comprising borohydride. The at least one chemical hydride can be in the form of Mb
x
H
y
, in which M is a metal. Specifically, the at least one chemical hydride can comprise one or a combination of: NaBH
4
, LiBH
4
, KBH
4
, or RbH
4
. Alternatively, the at least one chemical hydride can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for generating hydrogen inside of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for generating hydrogen inside of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for generating hydrogen inside of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.