Check-actuated control mechanisms – With additional – disparate means preventing fraudulent... – Means preventing use of tethered check
Reexamination Certificate
2001-09-28
2004-05-18
Bartuska, F. J. (Department: 3627)
Check-actuated control mechanisms
With additional, disparate means preventing fraudulent...
Means preventing use of tethered check
C194S317000
Reexamination Certificate
active
06736250
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to fraud protection of a coin, token, or bill accepting device and in particular to a method and apparatus for coin, token, or bill sensing.
BACKGROUND OF THE INVENTION
Numerous devices are configured to directly accept money, in the form of coins, tokens, or bills. These types of devices include gaming machines, such as devices configured to provide a gambling or wagering event, vending machines, meters, access control systems, and lottery machines. Configuring a device to directly accept money provides the advantage of attendant free operation and conveniences to the user. For example, a device capable of directly accepting money need not be monitored or continually attended by a cashier and, as a result, the cost associated with such a device is reduced and its hours of available operation increased. Most devices configured to accept money provide something of value in exchange for the coin, token, or bill (collectively money) provided by the purchaser, user or player.
While devices configured to accept monies directly from a user provide several advantages, there are also several drawbacks associated with non-attended money accepting devices. While these disadvantages are evident in general to all such devices that directly accept money, they are discussed below in the example environment of a gaming machine, such as a gaming or lottery machine configured to offer a gambling or wagering event. The gaming machine may be found in a casino or other location offering gambling, such as a bar or restaurant. In this type of gaming environment there may be hundreds or thousands of games with relatively few monitoring personal on the floor to monitor the gaming machines. As a result, dishonest individuals, or teams of dishonest individuals may attempt to defraud the gaming machines by taking advantage of the machines direct money accepting capability.
Various methods and apparatus exist to defraud these types of gaming machines. For example money may be modified by attaching a string or cord thereto to forcefully retrieve the money from the machine after credit has been registered on the machine. Similarly, the money may be attached to a flexible shiv and, after credit provided, retrieved from the gaming machine. This process may be repeated numerous times thereby generating credit on the gaming machine. The credits may then be cashed out or redeemed for cash or credit. It is difficult for personnel on the floor to detect or prevent this type of fraud because of the disproportionately large number of gaming machines as compared to the number of monitoring personnel.
To counter and prevent the acts of fraud on the gaming machines, several fraud prevention devices have been proposed for inclusion into the gaming machines. One such device comprises a light source that generates a steady state signal that is always on and a light detector aligned across a coin path. Improper interruption of the light at the light detector may cause a coin to not be accepted. Another fraud prevention feature is to link the output of light detector to the gaming machine operating system. The operating system then continually monitors the data input from the light detector and is suppose to tilt the machine based on the results of the monitoring.
While these proposed solutions were at first effective, the more determined fraud perpetrators were able to overcome these fraud prevention hurdles. These fraud prevention system were able to be overcome because of drawbacks in the system. The fraud perpetrators were able to construct fraud devices capable of generating a light signal or were able to construct the shiv out a clear material that allowed the light signal to pass. Further, the gaming machine operating system was often overloaded and thus unable to accurately track the numerous data inputs from the fraud system. Hence the fraud went undetected.
As a result of the drawbacks of the prior art, there is a need for a fraud detection and prevention system that overcomes the method and apparatus employed by advanced fraud perpetrators.
SUMMARY OF THE INVENTION
The invention comprises a method and apparatus for monitoring a coin, token or bill path in a device configured to accept money from a user. As part of the monitoring the behavior of the coin, token, or bill and its progression through the path may be closely analyzed for behavior or for items that may reside or block the coin path. By closely analyzing the behavior of items passing through or residing in the coin path, fraud can be detected. Various embodiments of the invention may include a coin path with multiple emitters and/or detectors, signal generation and processing electronics, optical sensors, frequency to voltage convertors, modulators, and/or pizo-electric devices. The invention is discussed below in greater detail.
In one embodiment, a system for detecting fraudulent coin or token submission to a gaming device is configured with one or more light sources configured to generate light energy, and one or more light detectors configured to detect the light energy. Also included are one or more modulators configured to generate and provide one or more modulated signals to the one or more light sources and a controller connected to at least one of the one or more modulators and at least one of the one or more light detectors.
In addition, the light energy may be selected from the group consisting of light in the ultraviolet, infrared, or visible spectrum. The system may also include one or more electro-optical convertors between the one or more light detectors and the controller. In addition, the controller may also include compare logic configured to receive and compare the output from the one or more light detectors with output of the modulator.
In another embodiment a coin detector with a fraud detection capability is provided that comprises a coin detector having a coin rake that is movable between a first position and range of other positions. Also included is an emitter configured to emit light energy and a receiver located to receive light energy from the emitter; said receiving light energy dependant on the position of the coin rake. Also included is a controller configured to analyze data from the receiver and the coin detector to thereby determine the position of the coin rake.
It is further contemplated that this system may include a frequency to voltage converter configured to convert the signal having a voltage to a signal that is directly related to the frequency. The receiver may comprises a light sensor and the emitter may comprise a light emitting diode. In one embodiment the system further includes a timer and comparator configured to time the duration that the coin rake is in other than the first position and a comparator to compare the time the duration to a stored value to determine if an object is preventing the coin rake from returning to the first position.
Yet other aspect of the invention includes a method for detecting an object in a coin path comprising monitoring a coin rake detector to determine the position of the coin rake detector wherein the coin rake detector movable between a first position and second position and then timing the period between when the coin rake moves from the first position to when the coin rake returns to the first position. Thereafter, comparing the period to a stored value representative of a known duration for a valid coin to pass through the coin rake and generating a signal if the comparing determines the period exceeds the known duration. If the comparing determines that the period exceeds the known duration then fraud may be occurring.
This method may also operate where the coin rake detector comprise a emitter/receiver pair configured to monitor the position of the coin rake and/or where the first position is the position assumed by the coin rake when a coin or token is not passing through the coin rake. In one embodiment the method further includes the step of actuating the coin rake upon detection of a fraudulent event.
In an
Bartuska F. J.
Marshall & Gerstein & Borun LLP
LandOfFree
Method and apparatus for fraud detection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for fraud detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for fraud detection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3196554