Method and apparatus for forming grooves on a workpiece and...

Abrading – Precision device or process - or with condition responsive... – Computer controlled

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S056000, C451S057000, C125S011010

Reexamination Certificate

active

06572442

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a grinding apparatus provided with a grindstone for working, for example, spline ball grooves on the inner surface of a workpiece and a dressing method for dressing the grindstone.
There are known grinding apparatuses that use a grindstone to form spline ball grooves on the inner surface of a workpiece. One such conventional grinding apparatus comprises a spindle mechanism, which is rotated by means of a motor, and a substantially disc-shaped grindstone rotatable by means of the spindle mechanism. As the grindstone rotates and moves in the axial direction of the workpiece, its outer peripheral portion grinds the inner surface of the workpiece. The grindstone is rotatably supported by means of a bearing of the spindle mechanism. A pulley is coupled to the grindstone. Another pulley is coupled to the rotating shaft of the motor that is situated at a distance from the grindstone. An endless belt for power transmission is passed around and between the two pulleys.
The rotation of the motor is transmitted to the grindstone by means of the pulleys and the belt. The axis of the spindle mechanism extends parallel to that of the workpiece. The spline ball grooves are ground as the grindstone rotates and moves parallel to the axis of the workpiece so that its outer peripheral portion touches the inner surface of the workpiece. This conventional grinding apparatus cannot use a bearing that has a diameter larger than that of the disc-shaped grindstone. Accordingly, the bearing cannot enjoy good stiffness to resist grinding force.
Thus, according to the conventional grinding apparatus described above, it is hard to augment grinding forces in the tangential and normal directions of the circular grindstone that are needed to grind the workpiece. In some cases, therefore, the grinding efficiency is low, and the surface accuracy of the spline ball grooves is not high enough. Since the bearing has a small diameter, moreover, it is subjected to too heavy a load of grinding to enjoy a long life. Since the belt is small-sized, furthermore, its tension or durability may be unsatisfactory.
As shown in
FIG. 13
, some conventional grinding apparatuses may use a single-point dresser
101
for dressing a grindstone
100
. According to a dressing method using this dresser
101
, however, it is ground at an angle &thgr;′ to a center
100
c
of the grindstone
100
(so-called interference grinding), so that a distal end face
102
of the grindstone
100
cannot easily have a given curvature radius and is subject to undulation. Further, it is hard for the dresser
101
accurately to dress and shape a grindstone for grinding a groove in the form of a Gothic arch.
FIG. 14
shows shape errors of a Gothic-arched groove ground with use of the grindstone
100
that is dressed by means of the conventional dresser
101
. A target value of a curvature radius R of the groove for a contact angle &thgr; of 45° is 3 mm. In this case, the target value can be substantially secured for positions near 45° (&thgr;=40° to 50°). At its bottom or shoulder portions, however, the groove is subject to considerable shape errors, as indicated by a segment
103
.
In the case where a formed dresser is used for dressing, on the other hand, the grindstone may possibly fail to come into entire contact with the dresser, owing to thermal deformation of the spindle mechanism for the grindstone or a dresser rotating mechanism. Conventionally, this problem is solved by a known technique that is described in Jpn. Pat. Appln. KOKAI Publication No. 3-19770, for example. This technique is a method in which the axial displacement of a grindstone is detected by means of a noncontact sensor, and dressing is carried out after dislocation corresponding to the displacement is corrected. Although this conventional technique can be effectively applied to a small-diameter grindstone for inner surface grinding, it cannot be used to dress a large-diameter grindstone for outer surface grinding or a pencil-type grindstone.
In Jpn. UM Appln. KOKAI Publication No. 61-169564, there is described an apparatus for transmitting ultrasonic vibration, which is generated as a rotary dresser and a grindstone come into contact with each other, to an acoustic emission sensor through the medium of a liquid, in order to detect contact between the dresser and the grindstone. In this conventional apparatus, however, the liquid for use as the ultrasonic propagation medium cannot be controlled with ease. Described in Jpn. Pat. Appln. KOKAI Publication No. 6-8138, moreover, is an apparatus in which contact between a grindstone and a rotary dresser is detected by means of a sensor with the aid of a ball that is attached to the dresser. In this conventional apparatus, however, the ball generates noise of a relatively high level as it touches a detection plate. In the case where processing requires use of infinitesimal contact signals, the signal-to-noise ratio is limited and unpractical.
BRIEF SUMMARY OF THE INVENTION
Accordingly, a first object of the present invention is to provide a grinding apparatus capable of grinding grooves on a workpiece with improved efficiency. A second object of the invention is to provide a grinding apparatus capable of enhancing the accuracy of a grindstone to improve the accuracy of work on grooves. A third object of the invention is to provide a dressing method in which the whole surface of a grindstone can be brought securely into contact with a dresser, so that the dressing accuracy is improved to lengthen the life of the grindstone and enhance the dressing efficiency.
In order to achieve the first object described above, a grinding apparatus according to the present invention comprises a rod-shaped grindstone having a distal end portion with a curved surface corresponding to the cross section of a groove of a workpiece to be ground, a spindle mechanism for rotating the grindstone, supporting means for supporting the grindstone in a manner such that the grindstone is inclined at a given angle to the axis of the workpiece fixed in a predetermined position, and a drive mechanism for bringing the distal end portion of the grindstone into contact with the workpiece and relatively moving the grindstone along the axis of the workpiece without changing the aforesaid angle to the workpiece.
According to this invention, the grindstone has increased stiffness to resist grinding force as it forms a spline ball groove on the inner surface of the workpiece, so that the grinding efficiency and worked groove accuracy are improved. In this invention, the grindstone includes a rod-shaped metallic support member, an inner grindstone layer portion attached to the outer periphery of the support member, and an outer grindstone layer portion fixed to the inner grindstone layer portion so as to cover the outer peripheral surface thereof and having a distal end portion with a curved surface corresponding to the cross section of the spline ball groove of the workpiece. According to this invention, the grindstone and components of its drive system are improved in durability.
In order to achieve the second object, a grinding apparatus according to the invention comprises a rod-shaped grindstone having a distal end portion with a curved surface corresponding to the cross section of a groove of a workpiece to be ground, a spindle mechanism for rotating the grindstone, supporting means for supporting the grindstone in a manner such that the grindstone is inclined at a given angle to the axis of the workpiece fixed in a predetermined position, a dressing apparatus including a rotary dresser having a dress groove with a cross section corresponding to the distal end portion of the grindstone, and a drive mechanism for relatively moving the grindstone along the axis of the workpiece without changing the aforesaid angle, thereby reciprocating the distal end portion of the grindstone between the dress groove and the workpiece.
According to this invention, the rod-shaped grindstone reciprocates between the w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for forming grooves on a workpiece and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for forming grooves on a workpiece and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for forming grooves on a workpiece and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3138879

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.