Method and apparatus for flight parameter monitoring and...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S003000, C701S004000, C701S010000, C701S015000, C701S007000, C244S158700, C244S203000, C340S959000, C073S17800T

Reexamination Certificate

active

06253126

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to avionics and sensors for monitoring aircraft flight parameters. More particularly, it relates to methods and apparatus for three-dimensional flight parameter analysis, monitoring, acting on, and control based upon in-flight measuring, and comparing of air pressures acting on various surfaces of an aircraft and controlling the aircraft in relation to same.
BACKGROUND OF THE INVENTION
Atmospheric pressures acting upon the various surfaces of an aircraft are determinative of the performance of aircraft. Indeed, flight itself is predominantly a function of the interaction of the aircraft outer surfaces with air. For example, lift is caused by the differential between air pressure acting on the upper and lower surfaces of the aircraft wings in the wind stream.
For these reasons, the aircraft and airline industries have dedicated large amounts of time and money to develop means for monitoring flight performance and detecting lift-robbing wing contaminants, such as Type II fluids and ice, wind shear, microbursts and other adverse air conditions. Examples of such systems and apparatus are described in U.S. Pat. Nos. 3,691,356; 4,110,605; 4,490,802; 4,728,951; 4,775,118; 4,837,695; 4,843,554; 4,980,833 and 5,047,942 the disclosures of which are incorporated by reference herein.
In spite of the importance of air pressure acting on the surface of an aircraft, none of the references disclose a method or apparatus to directly measure or analyze the actual pressures acting on the surface of an aircraft.
In addition, no system or apparatus utilizes pressure development data in conjunction with Advanced Flight Control Systems (AFCS) to control the aircraft or transmit this data to ground personnel for evaluation of flight performance and abnormalities in pressure development.
The present invention is provided to solve these and other problems.
SUMMARY OF THE INVENTION
According to a primary aspect of the invention, the actual air pressure acting on the outer surfaces of an aircraft during operation is measured. Other aspects of the invention include, measuring and monitoring the actual air pressure acting at the surface of the aircraft, in substantially real-time during the flight and using the measured air pressure values to monitor and control flight conditions.
Still other aspects of the invention, include measuring an actual air pressure differential acting between the air pressure acting on two outer surfaces of an aircraft during operation is measured. Another aspect of the invention, measuring and monitoring the actual air pressure differential measurements in essentially real-time during the flight.
According to another aspect of the invention, the measured air pressure differential values are used to monitor and control flight conditions. For example, according to another aspect of the invention, the actual air pressure differential between the air pressure acting on the upper surface of a wing portion and the air pressure acting on the lower surface of the wing portion. This differential pressure measurement corresponds to the lift encountered by that wing portion. The lift values can then be monitored and used to control flight.
According to yet another aspect of the invention, the actual air pressure differential is measured between the static air pressure within an unpressurized area of the aircraft, such as the cargo bay of the fuselage, and the air pressure acting at or near a stagnation point of the leading edge of any other surface of the aircraft, such as the leading edge of the wing, or the leading edge of the nose cowl, or the leading edge of the tail fin. These differential values are monitored and can be used to determine the air speed and air direction and to control flight as discussed in more detail below.
According to another aspect of the invention, methods and apparatus are provided for measuring the actual air pressures and the actual air pressure differentials. For example, according to one aspect of the invention, small openings or ports are provided in the skin of the aircraft. The ports are connected by an air pressure conduit to a means for sensing a pressure and providing a signal related to the pressure. The ports are permeable by air and sensitive to the air pressure changes associated with flight at aircraft standstill to subsonic, supersonic and hypersonic speeds. At the same time, theses ports are provided with means to deter access through the port of extraneous matter such as water and its vapor, lubrication and deicing fluids, and particulates. Means are also provided to prevent icing of the port and to decontaminate the port; for example, a port heater and a sump volume is provided in a preferred embodiment. Preferably, the ports are flush with the outer surface of the aircraft so as not to cause local drag or other flow stream defects which could effect measurements or cumulatively effect flight efficiency. Means for assessing the signal and reporting data are operatively connected to the pressure sensing means. Means are provided for reporting the data optionally to the flight crew or to the aircraft's other flight control and monitoring systems or both.
In another aspect of the invention a matrix of ports and corresponding sensors are provided and the air pressures are measured and selectively compared with respect to each other to optionally assess two or three dimensional components of the air pressures acting over the aircraft at one time.
It is also contemplated that the conduit leading from the ports to the air pressure sensors can also be connected in either serial as opposed to discrete parallel connection. For example, the serial connection would provide an air pressure manifold with numerous ports contributing to a total manifold pressure.
Methods and apparatus are also provided for using the air pressure measurements for controlling flight. For example, according to other aspects of the invention, a method of using the air pressure measurements is to measure the actual air pressure during a first flight condition, then record or store the measured actual air pressure data for the first condition. Then, measure the air pressure during a second flight condition and compare the measurements from the first and second flight conditions during the second flight as the second flight measurements are developed. Preferably, the first flight condition is an acceptable one, such as a clean wing condition, proper lift, no wing defects, no wind shear, etc.
According to another method of the invention, flight control is accomplished by calculating values from the measured air pressures or measured pressure differentials. For example, if one can measure air pressures in real time, one can determine many things about the aircraft performance through comparative mathematical analysis. If, for instance, one has the air speed and knows the pressure reading at two precisely selected locations on the wing and what position the flight control surfaces are in, then determining the correct angle of attack is a relatively easy task. So is it easy to surmise as to the actual margin to stall that the wing has remaining to operate in.
Other aerodynamic performance data can be deduced from this type of accurate real-time data acquisition and analysis. It would be possible to establish a program sub-routine that could identify wind shear and surmise its potential impact on the aircraft's flight path. This could be accomplished before the air crew is even aware that they have encountered a wind shear. In such a situation, it would be possible to integrate this aerodynamic performance monitoring capability with the aircraft's automated flight controls, so as to ameliorate the effects of the shears, thereby lessening the potential for disaster somewhat. This would be particularly true in the presence of a side shear occurring at low levels.
Further, it would be possible through integration to determine if the correct landing and takeoff configurations had been implemented early on. The accident

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for flight parameter monitoring and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for flight parameter monitoring and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for flight parameter monitoring and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2501357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.