Method and apparatus for firing simulation

Data processing: measuring – calibrating – or testing – Measurement system – Dimensional determination

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S107000, C434S021000, C434S022000

Reexamination Certificate

active

06549872

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
The present application claims the right of foreign priority of German Application No. DE 100 50 691.7, filed Oct. 13, 2000, the subject matter of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
The invention relates to a method and an apparatus for simulating a shot fired from a gun that fires ballistic projectiles at a target, preferably an earth-bound, moving or standing target.
In a known apparatus for firing simulation, referred to as a two-way simulator (DE 22 62 605 A1), and utilizing a practice firing device operating with laser pulses, a laser pulse transmitter is secured to the barrel of the gun and its transmitted laser-pulse sequence reaches a target through the manual aiming of the gun at the target by a gunner. If the gunner perceives the aiming process as correct, he actuates the trigger of the gun. This initiates an automatic process in which a transmitter control switches on the laser transmitter for a duration of a few milliseconds. The laser pulses impact reflectors disposed on the target, from where they are reflected onto a position-sensitive detector on the gun barrel. A range calculator calculates the target range from the transit time of the reflected laser pulses. An angular-position calculator simultaneously determines the angular deviation between the bore axis of the barrel and the center of gravity of the reflected laser radiation. A flight-time calculator determines the theoretical projectile flight time. Over the course of the projectile flight time, the laser transmitter transmits a further laser-pulse sequence, and the angular-position calculator recalculates the angular deviation between the bore axis and the center of gravity of the laser radiation.
A range calculator uses the target range and type of ammunition to calculate the correct range setting. In accordance with this correct setting, a point-of-burst position calculator uses the elevation-angle course of the target at the beginning and end of the projectile flight, the elevation aiming angle of the barrel at the time of firing and the range, to calculate the angle of elevation of the point of burst or point of impact. Analogously, the azimuth-angle course of the target at the beginning and end of the projectile flight, the lateral-pivot angle of the barrel at the time of firing and the range, are used to calculate the lateral position of the point of burst.
The point-of-burst position calculator is connected to an encoder that is programmed with respect to the type of weapon and ammunition, and is connected to the range calculator. The encoder controls the laser transmitter such that the transmitter transmits a second, encoded laser-pulse sequence that differs from the first laser-pulse sequence, and contains information about the range, the lateral and elevation-related deviations of the point of burst, and the type of ammunition and weapon. This laser-pulse sequence impacts a detector disposed on the target, to which an impact receiver, a decoder and an impact-data calculator are connected. The impact-data calculator uses the transmitted information to determine whether the weapon was effective in terms of the type of ammunition used, and calculates the effect of the detonation through a comparison between the expansion of the target in the firing direction and the deviation of the point of burst in the lateral and elevation directions.
It is the object of the invention to provide a method for firing simulation of the type mentioned at the outset, which permits larger ranges while adhering to the guidelines for visual detectability of the used laser, and also does not fail when the weapon fires at a group of closely-clustered targets. Moreover, an apparatus for firing simulation that operates in accordance with the method is intended to be produced inexpensively.
SUMMARY OF THE INVENTION
The above object is achieved according to a first aspect of the invention, by a method for simulating a shot fired from a gun for ballistic projectiles at a target, preferably an earthbound, moving or standing target, which comprises: aiming a sight, whose line of sight extends parallel to the bore axis of the gun, at the target with a setting of a horizontal course (lead) and a vertical course (elevation) of the line of sight from the target; then manually activating a trigger on the gun to initiate a simulated firing of the gun by transmitting a first laser beam including a plurality of laser pulses corresponding to a fictively fired projectile; calculating a trajectory of the fired fictively projectile; continuously determining the deviations of the trajectory from the instantaneous line-of-sight orientation at the firing time; pivoting the first laser beam by pivot-angle values that correspond to the trajectory deviations; measuring the transit time of the laser pulses reflected by the target and using the transit times to determine the target range (r); comparing either the time that has passed between the firing time and the reception of the reflected laser pulses to the flight time of the fired virtual projectile calculated for the target range (r), or comparing the actual pivot-angle values of the first laser beam relative to the instantaneous line-of-sight orientation at the firing time, with the actual pivot angle values being associated with the target range (r), to the theoretical pivot-angle values of the first laser beam relative to the instantaneous line-of-sight orientation at the firing time, with the theoretical pivot angle values having been calculated from the trajectory data for the target range (r); if the compared values match within a tolerance range, transmitting a second laser beam comprising encoded laser pulses in the transmission direction last traversed by the first laser beam, with the encoding of the second laser beam containing information about firing data of the gun, including the type of ammunition and weapon, and the identity of the gunner; and, when the second laser beam is received by one of a plurality of detectors distributed over the surface of the target, calculating impact damage from the position of the receiving detector on the target.
The above object is achieved according to a further aspect of the invention by an apparatus for simulating a shot fired from a gun for ballistic projectiles at a target, preferably an earthbound, moving or standing target, which apparatus comprises: a gun having a sight whose line of sight is permanently set parallel to the bore axis of the gun, and a trigger for initiating the fictively fired projectile; a laser transmitter, which is fixedly coupled to the gun, for transmitting a first laser beam comprising laser pulses, and a second laser beam comprising encoded laser pulses, with a temporal offset and in the same direction as the first laser beam; a control unit, which is activated by the trigger, and upon being activated, causes the laser transmitter to transmit the first laser beam; a detector that is permanently connected to the gun for receiving the laser pulses of the first laser beam that are reflected at the target; a transit-time measuring element, which is disposed downstream of the detector, for measuring the transit time of the reflected laser pulses of the first laser beam; a range calculator for calculating the target range (r) from the transit time; a trajectory calculator, which is connected to the range calculator, for calculating trajectory data of the fictively fired projectile; a plurality of detectors that are distributed over the target surface and configured to receive the second laser beam; and evaluation electronics, which are connected to the detectors, for calculating impact damage; a deflection apparatus for pivoting the transmission direction of the laser beams connected to the trajectory calculator. When the first laser beam is transmitted, the trajectory calculator continuously calculates the deviation of the trajectory from the instantaneous line-of-sight orientation at the firing time, and supplies the calculated deviation as

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for firing simulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for firing simulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for firing simulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011429

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.