Method and apparatus for facilitating tiered collaboration

Telephonic communications – Audio message storage – retrieval – or synthesis – Interaction with an external nontelephone network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S088130, C379S201060, C379S265080, C379S900000, C379S908000, C370S352000, C370S389000

Reexamination Certificate

active

06310941

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of telecommunications and, in particular, to a method and apparatus for facilitating tiered collaboration.
2. Background Information
Numerous advances have been made in recent years in the field of telecommunications. One example of these numerous advances in communications is the emerging field of computer telephony via the internet. In particular, the field of internet telephony has emerged as a viable technology that is evolving at an ever increasing rate. Evidence of this evolution of internet telephony is best characterized by the number of new products recently become available in the market. Products such as CoolTalk by Netscape Communications Corporation of Mountain View, Calif.; Internet Connection Phone by International Business Machines of Amonk, N.Y.; Intel Internet Phone (IPhone) by Intel Corporation of Santa Clara, Calif.; NetMeeting by Microsoft Corporation, Redmond, Wash.; Quarterdeck WebTalk by Quarterdeck Corporation of Marina Del Rey, Calif.; TeleVox by Voxware Incorporated of Princeton, N.J.; and WebPhone by Netspeak Corporation of Boca Raton, Fla., are representative of the current state of applications facilitating interent telephony.
Each of these products offers internet based voice communications with a telephone motif, between two users each using the same (or compatible) product on either end of the internet connection. That is, the internet provides the “switching” architecture for the communication system, while the computer acts as the audio interface (e.g., the “handset”). One reason for the proliferation of these applications is a desire to push the technology of the internet to provide a total communications tool. The appeal to users is that, currently, the use of the internet is free of toll charges. Therefore, currently, a user of an internet phone product may communicate with another user located anywhere else in the world without having to pay the long distance charges associated with making a telephone call using the public switched telephone network (PSTN), so long as each of the users has a computer that is appropriately configured to provide such communications.
Although innovative in their own right, the current internet based telephony applications identified above have a number of limitations which retard their acceptance as a primary communications tool. One such limitation is that many of the applications identified above require that both users have installed the same software package, or compatible packages and, therefore, provide a relatively low level of interoperability. One reason for this lack of interoperability between internet telephony applications is that the developers of many of these products have incorporated different voice encoders (commonly referred to as a “voice codec”, or simply a “codec” by those in the telecommunication arts) in the products. Consequently, as a result of the different codecs used, many internet telephony applications are unable to recognize speech encoded (i.e., digitized) by a codec of a disimilar application.
This problem is alleviated for those products that are upgraded to comply with emerging telephony standards, such as International Telecommunication Union's (ITU) H.323 standard. However, other limitations remain. For example, another limitation associated with many of these products is that they are tied to the internet, often requiring all users to access a common server in order to maintain a directory of available users in which to call. That is to say, many of the applications identified above do not integrate the packet switched network of the internet with the circuit switched public switched telephone network (PSTN). Therefore, although a computer connected to the internet may communicate with another user on the internet, assuming they are both using a common software application (or at least applications with compatible codecs), these applications do not support communication with a user of a Telephone handset.
The reason for this limitation is readily understood by those who appreciate the complexity of the two networks. As alluded to above, the internet is a packet switched network. That is to say, communication over the internet is accomplished by “breaking” the transmitted data into varying-sized packages (or “packets”), based primarily on communication content, and interleaving the various-sized packages to best utilize the bandwidth available at any given time on the internet. When the packets reach their intended destination, they must be reassembled into the originally transmitted data. Loss of packets, and thus data, occur frequently in such a network, and the ability of the network to successfully transmit information from one point in the network to another determines the quality of the network. For inter-computer communication transactions involving non real-time data, the ability to transmit packets and retransmit any packets that are perceived to have been dropped is not a severe limitation and may not even be perceived by the user of the system. However, in a voice communication transaction, the delay required to retransmit even one data packet may be perceived by a user. At best, such delays are an annoying inconvenience. In practice, the delays actually can become intolerable, as the cumulative latency adds up with successive transmissions.
In contrast to the packet switched network of the internet, the public switched telephone network (PSTN) is a circuit switched network. That is to say that the PSTN assigns a dedicated communication line to a user with which to complete the telephone call, wherein the user can utilize the assigned resource of the PSTN in any way they choose, with the understanding that the user is paying for the use of the dedicated resource of the PSTN. While the circuit switched approach of the PSTN system is not necessarily the most efficient system in terms of call traffic (i.e., it does not make use of the “dead space” common in a conversation), it is relatively easy to ensure that information destined for a particular user is delivered, it simply provides a dedicated line to complete the transaction.
Nonetheless, despite these engineering challanges, a few products have emerged which purport to integrate the PSTN to the internet. Products such as Net2Phone by IDT Corporation of Hackensack, N.J., claim to provide a computer user with the ability to place and receive a phone call to/from a PSTN extension. Unfortunately, none of these products completely solve the problem of integrating the two networks. The limitations perhaps best characterized by way of an example communication session. With these prior art internet telephony applications, a user of an internet telephony enabled client computer initiating a telephone call to a Telephone handset launches the collaboration session from the client computer by accessing a server (the primary access server), operated by the developer of the internet telephony application that supports internet telecommunications. As the initiator accesses the primary access server, he/she is prompted for a destination address, which takes the form of a PSTN telephone number for an outgoing call to a Telephone handset. Having provided the primary access server with the PSTN telephone number associated with the Telephone handset, the primary server somehow determines
1
which server in a community of similarly enabled servers (i.e., servers with the hardware/software necessary to provide access to the PSTN) is closest to the destination address, and completes the telephone call by routing the telephone call through a number of intermediate servers on the internet to the selected server, which will actually place the collaboration session to the Telephone handset on behalf of the client computer, facilitating the collaboration session between the client computer and the Telephone handset. In other words, the user of the client computer is required to have prior knowledge of the destination phone number, wh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for facilitating tiered collaboration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for facilitating tiered collaboration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for facilitating tiered collaboration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555406

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.