Method and apparatus for encoding MB810 line code with the...

Coded data generation or conversion – Digital code to digital code converters – To or from 'n' out of 'm' codes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S059000, C341S067000

Reexamination Certificate

active

06362757

ABSTRACT:

TECHNICAL FIELD
The present invention pertains to a method and apparatus for encoding line code, and more particularly, to producing a run length limit MB810 line code that is DC free.
BACKGROUND OF THE INVENTION
The primary purpose of line codes is to transform the frequency spectrum of a serial data stream so as to adapt the signal spectrum more closely to specific channel requirements. The code must also provide special characters outside the data alphabet for functions such as character synchronization, frame delimiters, and perhaps for abort, reset, idle, diagnostics, etc. In most cases a reduction in bandwidth by constraints on both the high and the low frequency components is desirable to reduce distortion in the transmission media, especially electromagnetic cables, or in the band limited receiver, and to reduce the effects of extrinsic and intrinsic noise.
Another aspect of codes is their interaction with noise and errors in the line digits. The redundancy associated with line codes can be used to supplement other error detection mechanisms or to monitor the quality of the channel with a minimal amount of circuitry.
Such codes generally exhibit the undesirable feature of enlarging error bursts in the decoded data, making detection by a cyclic redundancy check more difficult. A good transmission code should minimize these effects.
For fiber optic links and intra-establishment wire links, interest centers for many reasons on the family of two-level codes, called binary. Being binary, such codes fit nicely with optical channels suffering from nonlinearity, which cannot be perfectly eliminated in practiced engineering. Being binary, they offer the maximum receive signal-to-noise ratio (SNR) for the same given conditions, e.g., transmit optical power and optical span, compared to other multi-level codes.
For wire links one prefers codes with no DC and little low frequency content in order to DC isolate the transmission line from the driver and receiver circuitry, usually by transformers, and to reduce signal distortion on the line. Although these factors do not apply to the fiber optic case, good low frequency characteristics of the code are helpful for a number of reasons.
High-gain fiber-optic receivers need an AC coupling stage near the front end. The control of the drive level, receiver-gain, and equalization is simplified and the precision of control is improved, if it can be based on the average signal power, especially at top rates. DC restore circuits tend to lose precision with rising data rates to and cease to operate properly below the maximum rates for other circuits required in a transceiver. If the time constants associated with the parasitic capacitance at the front end of a receiver are comparable to or longer than a baud interval, a signal with reduced low frequency content will suffer less distortion and will enable many links to operate without an equalizing circuit.
By block coding, they can be made inherently run-length limited (RLL). They can be easily made to be dc-free. By block coding, it is easy to provide for extra control symbols.
In spite of all these advantages, a major concern playing against adopting the block coding is the fact that it usually requires more channel bandwidth than other choices due to the increased line rate. When using 8B/10B, for example, the main-lobe bandwidth, i.e., the bandwidth to the first power spectral null, is 12.5 GHz, 25% more than with uncoded binary input data.
Design of such a code, called minimum-bandwidth (MB) code, has been possible by making novel use of a theorem. The theorem establishes a condition for a digital signaling system to operate within the theoretical minimum-bandwidth dictated by Nyquist, hence usually called the Nyquist bandwidth, which is, by definition, half the signaling frequency. With most usual non-MB codes including Binary and 8B/10B, the line bandwidth is as wide as the signaling frequency.
The DC components of conventional codes that are infinite with its run-length, for example, scrambled NRZ, cause baseline wander of signals while they pass through an ac-coupled channel in high-speed communication network. In addition, the conventional codes require at least two times or more of Nyquist bandwidth. Therefore, in respect of transmission efficiency, the conventional codes are inferior.
The code disclosed by U.S. Pat. No. 5,022,051, “DC-free line code for arbitrary data transmission” removes DC components in the coded data by maintaining the same number of ones and zeros within a certain period. However, the required bandwidth is two times the Nyquist bandwidth.
The code disclosed by U.S. Pat. No. 5,396,239, “Data and forward error control coding techniques for digital signals” restricts run-length, and thus the DC component is reduced. However, it also needs two times the Nyquist bandwidth.
The code disclosed by U.S. Pat. No. 4,486,739, “Byte oriented DC balanced (0,4) 8B/10B partitioned block transmission code” converts an 8 bit input data into a 10 bit codeword so as to reduce DC component of the codeword. However, bandwidth of the coded data occupies two times the Nyquist bandwidth.
In “Line coding for very high speed LANs”, an 8 bit input data is divided into two 4 bit groups and encode them. It claims that the coding method provides a DC-free characteristic and simple implementation. However, it only provides a DC-free characteristic, not minimum bandwidth.
In “charge constrained (0,G/I,C) sequences”, run-length is limited and therefore the code has a DC-free characteristic. However, it only provides a DC-free characteristic, not minimum bandwidth.
In “New class of (2p)B(2p+1)B DC balanced line codes”, disparity is restricted while coding is performed and therefore the code provides a DC-free characteristic. However, it only provides a DC-free characteristic, not minimum bandwidth.
Since the above mentioned conventional codes are only DC-free and not minimum bandwidth, the transmission efficiency in a band limited channel is decreased by a factor of two. Hence, there is a need for DC-free and minimum bandwidth characteristics to improve transmission performance and efficiency, such as is desired in high-speed networks.
SUMMARY OF THE INVENTION
The disclosed embodiments of the present invention provide a coding system that includes a method and apparatus for producing a run-length limited MB810 code.
In accordance with another aspect of the disclosed embodiment, such a coding system produces code that is DC-free and capable of operating within the theoretical Nyquist bandwidth for an MB810 code. This means the code is near optimum for run length, digital sum variation (DSV), and alternate sum variation (ASV) for an MB810 code.
The disclosed embodiments also provide such a coding system wherein each 8 bit input block is converted into 10 bit output codeword.
In accordance with a further aspect of the disclosed embodiments, the coding is performed by hardwire only to provide a wire-speed in encoding and decoding.
The foregoing features and advantages of the present invention are realized by utilizing a coding method for MB810 that converts 8-bit input data into 10-bit codeword, the codeword satisfying DC-free and minimum bandwidth characteristics.
The procedural steps of a general design method for MBmn line code can be summarized as follows:
Step 1: Select the number of input bits m and the number of output bits n for an (m,n) block code. In one embodiment, n should be an even number; a binary MBmn code of an odd value of n is found to be impossible. Preferably m is n−1 for minimal redundancy. In the disclosed embodiment, a code design with m equal to n−1 is impossible. In that case, m equal to n−2 will be taken.
Step 2: Accumulate a sufficient number of BUDA (binary unit DSV and ASV) cell, as shown in
FIG. 1
, to form a BUDA stack for derivation of the state diagram. Note that stacking cells horizontally would increase the DSV value. Doing so vertically would increase the ASV value. Therefore, where to add additionally needed cells will depend on the des

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for encoding MB810 line code with the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for encoding MB810 line code with the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for encoding MB810 line code with the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.