Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone
Reexamination Certificate
2000-12-15
2002-07-09
Isabella, David J (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Bone
Reexamination Certificate
active
06416552
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention relates generally to a method and apparatus for use in orthopedic surgical procedures, and more particularly to a method and apparatus for enabling access to an intramedullary canal of a femur through a femoral knee joint prosthesis.
2. Discussion of the Related Art
A knee joint prosthesis typically comprises a femoral component and a tibial component. The femoral component and the tibial component are designed to be surgically attached to the distal end of the femur and the proximal end of the tibia, respectively. The femoral component is further designed to cooperate with the tibial component in simulating the articulating motion of an anatomical knee joint.
Motion of a natural knee is kinematically complex. During a relatively broad range of flexion and extension, the articular surfaces of a natural knee experiences rotation, medial and lateral angulation, translation in the sagittal plane, rollback and sliding. Knee joint prostheses, in combination with the ligaments and muscles, attempt to allow natural knee motion, as well as absorb and control forces generated during the range of flexion. Depending on the degree of damage or deterioration of the knee tendons and ligaments, it may also be necessary for a knee joint prosthesis to limit one or more of these motions in order to provide adequate stability.
After the knee joint prosthesis is implanted into a patient, there may be situations which require access to the intramedullary canal of the femur, proximal to the femoral component. For example, should a supracondylar fracture occur above the anterior flange of the femur, this fracture may require a femoral nail to provide patient stability. Use of currently available posterior stabilized (PS) femoral components, however, pose various advantages and disadvantages when access to the intramedullary canal is required.
PS femoral components having a “closed box” provide the advantage of preventing debris migration into the articulating joint area, as well as preventing bone cement from passing through the opening to interfere with the tibial component. However, because the top of the box is closed, one way to insert a femoral nail involves removing the PS femoral component, implanting the femoral nail, and reimplanting a new revision PS femoral component. Alternatively, a high speed burr may be used to create a hole through the solid box, thereby creating sharp metal debris that may easily damage the rest of the femoral component.
Should an “open box” PS femoral component be utilized, a femoral nail may be passed through the top of the box and into the intramedullary canal without the disadvantages of the closed box. However, an “open box” PS femoral component also allows increased debris, bone chips or bone cement to pass through into the articulating joint area both during implantation and during use. As such, the use of “open box” or “closed box” PS femoral components each exhibit different advantages and disadvantages.
Another method for assisting in the healing of a supracondylar fracture or to improve patient instability is to modify the knee joint prosthesis with a constrained femoral component. This is generally achieved by providing a femoral component with an intramedullary stem that extends from the box. Here again, with existing stemmed femoral components, the stem is either integral with the femoral component or it must be attached to a modular femoral component before the component is implanted. In such cases, modular knee joint prosthetic devices are available which enables different boxes or different length stems to be coupled to the femoral component. However, these modular knee joint prosthetic devices require assembly before the prosthetic device is implanted and do not allow later intraoperative modification of the knee joint prosthesis without removal of the femoral component itself. This would, therefore, again require the femoral component to be removed with a new revision femoral component being subsequently implanted that has the intramedullary stem.
What is needed then is a method and apparatus for enabling access to an intramedullary canal of a femur through the femoral component of the knee joint prosthesis which does not suffer from the above mentioned disadvantages. This, in turn, will eliminate the need for removal of the femoral component to insert a femoral nail or a femoral stem; provide a closed box which has the advantage of preventing debris or bone cement from entering the articulating joint area; provide an easy mechanism to open the top of the box intraoperatively when it is desired to gain access to the intramedullary canal of the femur without having to remove the femoral component; reduce overall surgical cost, time and complexity to correct a supracondylar fracture; and provide a convertible sealed top which may be subsequently opened after the knee joint prosthesis has been implanted to provide the benefits of both a “closed box” femoral component and an “open box” femoral component. It is, therefore, an object of the present invention to provide such a method and apparatus for enabling access to an intramedullary canal of a femur through a femoral knee joint prosthesis.
SUMMARY OF THE INVENTION
In accordance with the teachings of the present invention, a method and apparatus for enabling access to an intramedullary canal of a femur through a femoral knee joint prosthesis is disclosed. This is basically achieved by providing a femoral knee joint prosthesis that defines a bore passing therethrough. A seal member seals the bore and is operable to be opened to enable access to the intramedullary canal of the femur.
In one preferred embodiment, a femoral knee joint prosthesis for allowing access to an intramedullary canal of a femur after the femoral knee joint prosthesis has been implanted includes a first condylar portion and a second condylar portion. The first condylar portion has a first femoral bearing surface and the second condylar portion has a second femoral bearing surface. An inner condylar portion extends between the first condylar portion and the second condylar portion and defines an opening passing therethrough. A seal member is operable to seal the opening in the top such that the seal member is further operable to be opened to enable access to the intramedullary canal of the femur without having to remove the femoral knee joint prosthesis from the femur.
In another preferred embodiment, a knee joint prosthesis for enabling access to an intramedullary canal of a femur includes a femoral component having at least one bearing surface and defining a bore passing therethrough. A tibial component having a second bearing surface is operable to articulate with the first bearing surface of the femoral component. A seal member is operable to seal the bore in the femoral component such that the seal member may be opened after the femoral component is implanted to enable access to the intramedullary canal of the femur.
In another preferred embodiment, a method for enabling access to an intramedullary canal of a femur through a femoral knee joint prosthesis includes implanting the femoral knee joint prosthesis having a seal member which seals a bore passing through the femoral knee joint prosthesis. Thereafter, the seal member in the femoral knee joint prosthesis is opened after the femoral knee joint prosthesis has been implanted to enable access to the intramedullary canal of the femur without removing the femoral knee joint prosthesis from the femur.
In yet another preferred embodiment, a knee joint prosthesis that provides access to an intramedullary canal of a femur after the knee joint prosthesis has been implanted includes a femoral component and a seal member. The femoral component has at least a first bearing surface and defines a bore passing through the femoral component. The seal member substantially seals the bore in the femoral component, such that the seal member may be substantially removed after the femoral component is implanted to enable access to the
Brown David Ray
Hoeppner Jacy Charles
Metzger Robert
Salyer Brian David
VanDeWater Gregory David
Biomet Inc.
Harness & Dickey & Pierce P.L.C.
Isabella David J
LandOfFree
Method and apparatus for enabling access to an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for enabling access to an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for enabling access to an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2870158