Method and apparatus for electrospray-augmented high field...

Radiant energy – Ionic separation or analysis – Ion beam pulsing means with detector synchronizing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S287000, C250S282000, C250S288000

Reexamination Certificate

active

06690004

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to ion mobility spectrometry for gas and liquid sample preparation, filtering, and detection in a field asymmetric waveform ion mobility spectrometer, with electrospray sample delivery, and using either internal or external detectors.
BACKGROUND OF THE INVENTION
Electrospray mass spectrometry is a powerful analytical tool that has been broadly applied to bio-molecular structure analysis (i.e., Proteins, Peptides and DNA). See Electrospray Ionization Mass Spectrometry Fundamentals, Instruments, and Applications, Richard B. Cole, John Wiley and Sons, 1997. This technique plays a central role in the development of most pharmaceutical drugs and is being used to perform quantitative measurement of human exposure to carcinogens. Because of the size and potential revenues of the pharmaceutical market, there is interest in developing instrumentation based on, and technical enhancements to, electrospray mass spectrometry.
In recent years there has been a general trend to minimize the amount of sample required for analysis and micro-electrospray ionization (micro-ESI, micro-ES) and nanospray describe two of these approaches. These two methods share a lot in common, and they are often used interchangeably. Micro-ES is a miniaturized electrospray source with the same system components as “conventional” electrospray. These include a source of pumped liquid flow containing the sample for analysis, a small diameter sharp hollow needle through which liquid is pumped, and a source of high voltage to generate the spray. Nanospray relies on the electrostatic attraction of the liquid inside the needle towards an attractor counter-electrode to generate the flow rather than a pump. This characteristic makes nanospray very attractive as a means to minimize sample waste. Since electrospray, micro-ES, and nanospray are all species of a generic class referred to as electrospray they will be interchangeably referred to as electrospray in this patent.
The nature of the electrospray ionization process makes sample preparation a major consideration. The presence of solvent and buffer salts along with the sample significantly increases spectral complexity and degrades detection limits. The electrospray ionization process produces an abundance of solvent ions that give an intense mass spectral background that can severely limit identification of many compounds at trace levels in solution. Even without the solvent ions to contend with, many applications require working with complex mixtures that necessitate some degree of separation prior to mass analysis. See J. Lee, J. F. Kelly, I. Chernushevich, D. J. Harrison, and P. Thibalut “Separation and Identification of Peptides from Gel-Isolated Membrane Proteins Using a Microfabricated Device for Combined Capillary Electrophoresis/Nanoelectrospray Mass Spectrometry,” Anal.Chem.2000, 72,599-609. Better methods for elimination of unwanted solvent and separation of sample ions from background are therefore needed.
Electrospray mass spectrometry (ES-MS) provides a powerful tool for structure determination of peptides, proteins. This is important, as structure to a large extent defines the function of the protein. The structural information about a protein is typically determined from its amino acid sequence. To identify the sequence, the protein is usually digested by enzymes, and the peptide fragments are sequenced by tandem mass spectrometry. Another possible way to obtain the sequence is to digest the protein and measure the molecular weights of the peptide fragments. These are the input data for a computer program which digests theoretically all the proteins being found in the data base and the theoretical fragments are compared with the measured molecular weights.
Recently, it has been noticed that Ion Mobility Spectrometry can provide useful information to an electrospray/mass-spectrometry measurement. Ion Mobility spectrometry is ordinarily an atmospheric pressure technique which is highly sensitive to the shape and size of a molecule. Protein identification thorough the combination of an IMS and mass spectrometer may eliminate the need for protein digestion, simplifying sample preparation.
Commercially available IMS systems are based on time-of-flight (TOF), i.e., they measure the time it takes ions to travel from a shutter-gate to a detector through an inert atmosphere (1 to 760 Torr.). The drift time is dependent on the mobility of the ion (i.e., its size, mass and charge) and is characteristic of the ion species detected. TOF-IMS is a technique useful for the detection of many compounds including narcotics, explosives, and chemical warfare agents. See PCT Application Ser. No. PCT/CA99/00715 incorporated herein by this reference and U.S. Pat. No. 5,420,424 also incorporated herein by this reference. In ion mobility spectrometry, gas-phase ion mobility is determined using a drift tube with a constant low field strength electric field. Ions are gated into the drift tube and are subsequently separated based on differences in their drift velocity. The ion drift velocity under these conditions is proportional to the electric field strength and the ion mobility, which is determined from experimentation, is independent of the applied field. Current spectrometers use conventionally machined drift tubes (minimum size about 40 cm
3
) for ion identification.
In conventional time-of-flight ion mobility spectrometers (TOF-IMS) ion identification is done in a low strength electric field (less than 1000 V/cm) where the coefficient of mobility for each ion is essentially independent of field strength [.W. McDaniel and Edward A. Mason, The mobility and diffusion of ions in gases, John Wiley & Sons, 1973].
At high electric fields, ion mobility becomes dependent upon the applied electric field strength and the ion drift velocity may no longer behave linearly with field strength. This principle is utilized in the subject of this disclosure.
The field asymmetric waveform ion mobility spectrometer (FAIMS, also known as RF-IMS) utilizes these significantly higher electric fields, and identifies the ion species based on the difference in its mobility in high and low strength electric fields.
The FAIMS spectrometer uses an ionization source, such as an ultra violet photo-ionization lamp, to convert a gas sample into a mixture of ion species with each ion type corresponding to a particular chemical in the gas sample. The ion species are then passed through an ion filter where particular electric fields are applied between electrodes to select an ion type allowed to pass through the filter. Once through the filter the ion type hits a detector electrode and produces an electrical signal. To detect a mixture of ion species in the sample, the electric fields applied between the filter electrodes can be scanned over a range and a spectrum generated. The ion filtering is achieved through the combination of two electric fields generated between the ion filter electrodes, an asymmetric, periodic, radio frequency (RF) electric field, and a dc compensation electric field. The asymmetric RF field has a significant difference between its peak positive field strength and negative field strength. The asymmetric RF field scatters the ions and causes them to deflect to the ion filter electrodes where they are neutralized, while the compensation field prevents the scattering of a particular ion allowing it to pass through to the detector. The ions are filtered in instruments on the basis of the difference in the mobility of the ion at high electric fields relative to its mobility at low electric fields. That is, the ions are separated due to the compound dependent behavior of their mobility at high electric fields relative to their mobility at low electric fields.
The FAIMS approach is based on an observation of Mason and McDaniel [.W. McDaniel and Edward A. Mason, The mobility and diffusion of ions in gases, John Wiley & Sons, 1973] who found that the mobility of an ion is affected by the applied electric field strength. Above an ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for electrospray-augmented high field... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for electrospray-augmented high field..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for electrospray-augmented high field... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3350734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.