Method and apparatus for electromagnetic treatment of the...

Surgery – Instruments – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S088000

Reexamination Certificate

active

06280438

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the art of electromagnetic skin treatment, including devices and methods for removing hair. The invention relates to a method and apparatus for utilizing a spatially dispersed or extended pulsed light source such as a flashlamp and providing treatment parameters for its use, and also relates to use of devices and methods that utilize electromagnetic energy to kill hair follicles.
BACKGROUND OF THE INVENTION
It is known in the prior art to use electromagnetic radiation in medical applications for therapeutic uses such as treatment of skin disorders. For example, U.S. Pat. No. 4,298,005 to Mutzhas describes a continuous ultraviolet lamp with cosmetic, photobiological, and photochemical applications. A treatment based on using the UV portion of the spectrum and its photochemical interaction with the skin is described. The power delivered to the skin using Mutzhas' lamp is described as 150 W/m
2
, which does not have a significant effect on skin temperature.
In addition to prior art treatment involving UV light, lasers have been used for dermatological procedures, including Argon lasers, CO
2
lasers, Nd(Yag) lasers, Copper vapor lasers, ruby lasers and dye lasers. For example, U.S. Pat. No. 4,829,262 to Furumoto, describes a method of constructing a dye laser used in dermatology applications. Two skin conditions which may be treated by laser radiation are external skin irregularities such as local differences in the pigmentation or structure of the skin, and vascular disorders lying deeper under the skin which cause a variety of skin abnormalities including port wine stains, telangiectasias, leg veins and cherry and spider angiomas. Laser treatment of these skin disorders generally includes localized heating of the treatment area by absorption of laser radiation. Heating the skin changes or corrects the skin disorder and causes the full or partial disappearance of the skin abnormality.
Certain external disorders such as pigmented lesions can also be treated by heating the skin very fast to a high enough temperature to evaporate parts of the skin. Deeper-lying vascular disorders are more typically treated by heating the blood to a high enough temperature to cause it to coagulate. The disorder will then eventually disappear. To control the treatment depth a pulsed radiation source is often used. The depth the heat penetrates in the blood vessel is controlled by controlling the pulse width of the radiation source. The absorption and scattering coefficients of the skin also affect the heat penetration. These coefficients are a function of the constituents of skin and the wavelength of the radiation. Specifically, the absorption coefficient of light in the epidermis and dermis tends to be a slowly varying, monotonically decreasing function of wavelength. Thus, the wavelength of the light should be chosen so that the absorption coefficient is optimized for the particular skin condition and vessel size being treated.
The effectiveness of lasers for applications such as tattoo removal and removal of birth and age marks is diminished because lasers are monochromatic. A laser of a given wavelength may be effectively used to treat a first type of skin pigmentation disorder, but, if the specific wavelength of the laser is not absorbed efficiently by skin having a second type of disorder, it will be ineffective for the second type of skin disorder. Also, lasers are usually complicated, expensive to manufacture, large for the amount of power delivered, unreliable and difficult to maintain.
The wavelength of the light also affects vascular disorder treatment because blood content in the vicinity of the vascular disorders varies, and blood content affects the absorption coefficient of the treatment area. Oxyhemoglobin is the main chromophore which controls the optical properties of blood and has strong absorption bands in the visible region. More particularly, the strongest absorption peak of oxyhemoglobin occurs at 418 nm and has a band-width of 60 nm. Two additional absorption peaks with lower absorption coefficients occur at 542 and 577 nm. The total band-width of these two peaks is on the order of 100 nm. Additionally, light in the wavelength range of 500 to 600 nm is desirable for the treatment of blood vessel disorders of the skin since it is absorbed by the blood and penetrates through the skin. Longer wavelengths up to 1000 nm are also effective since they can penetrate deeper into the skin, heat the surrounding tissue and, if the pulse-width is long enough, contribute to heating the blood vessel by thermal conductivity. Also, longer wavelengths are effective for treatment of larger diameter vessels because the lower absorption coefficient is compensated for by the longer path of light in the vessel.
Accordingly, a wide band electromagnetic radiation source that covers the near UV and the visible portion of the spectrum would be desirable for treatment of external skin and vascular disorders. The overall range of wavelengths of the light source should be sufficient to optimize treatment for any of a number of applications. Such a therapeutic electromagnetic radiation device should also be capable of providing an optimal wavelength range within the overall range for the specific disorder being treated. The intensity of the light should be sufficient to cause the required thermal effect by raising the temperature of the treatment area to the required temperature. Also, the pulse-width should be variable over a wide enough range so as to achieve the optimal penetration depth for each application. Therefore, it is desirable to provide a light source having a wide range of wavelengths, which can be selected according to the required skin treatment, with a controlled pulse-width and a high enough energy density for application to the affected area.
Pulsed non-laser type light sources such as linear flashlamps provide these benefits. The intensity of the emitted light can be made high enough to achieve the required thermal effects. The pulse-width can be varied over a wide range so that control of thermal depth penetration can be accomplished. The typical spectrum covers the visible and ultraviolet range and the optical bands most effective for specific applications can be selected, or enhanced using fluorescent materials. Moreover, non-laser type light sources such as flashlamps are much simpler and easier to manufacture than lasers, are significantly less expensive for the same output power and have the potential of being more efficient and more reliable. They have a wide spectral range that can be optimized for a variety of specific skin treatment applications. These sources also have a pulse length that can be varied over a wide range which is critical for the different types of skin treatments.
In addition to being used for treating skin disorders, lasers have been used for invasive medical procedures such as lithotripsy and removal of blood vessel blockage. In such invasive procedures laser light is coupled to optical fibers and delivered through the fiber to the treatment area. In lithotripsy the fiber delivers light from a pulsed laser to a kidney or gallstone and the light interaction with the stone creates a shock wave which pulverizes the stone. To remove blood vessel blockage the light is coupled to the blockage by the fiber and disintegrates the blockage. In either case the shortcomings of lasers discussed above with respect to laser skin treatment are present. Accordingly, a treatment device for lithotripsy and blockage removal utilizing a flashlamp would be desirable.
To effectively treat an area the light from the source must be focussed on the treatment area. Coupling pulsed laser light into optical fibers in medicine is quite common. The prior art describes coupling isotropic incoherent point sources such as CW lamps into small optical fibers. For example, U.S. Pat. No. 4,757,431, issued Jul. 12, 1988, to Cross, et al. discloses a method for focusing incoherent point sources with small filaments or an arc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for electromagnetic treatment of the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for electromagnetic treatment of the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for electromagnetic treatment of the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2473338

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.