Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2002-02-19
2004-03-02
Bockelman, Mark (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S149000, C607S155000
Reexamination Certificate
active
06701185
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of medical devices, in particular electromagnetic stimulating devices for stimulation of nerve, muscle, and/or other body tissues with applications in the field of medicine.
SUMMARY OF THE INVENTION
The instant invention is drawn to an electromagnetic stimulating device able to provide stimulation to tissues of the human body, including nerves, muscles (including superficial and deep muscles), and/or other body tissues without significant discomfort to the patient. This electromagnetic stimulating device utilizes a plurality of overlapping planar coils encased in an ergonomic, body-contoured wrap. The design of the wrap is intended to allow for ease of use and also for the targeting of anatomic regions to be exposed to the impulses of the electromagnetic fields.
The device of the present invention provides an electromagnetic field to stimulate underlying body tissues in a manner necessary for the several applications including: the prevention/treatment of muscular atrophy, the treatment of neurogenic bladder and bowel, the treatment of musculoskeletal pain, the treatment of arthritis, and/or muscular augmentation. The plurality of overlapping coils are placed in an ergonomic wrap so as to blanket the designated therapeutic area, and thereby provide consistent therapy that can be quickly and easily administered. The invention is designed to be patient user friendly as well as to be portable. It can be used in a hospital, an outpatient clinic, a therapists office, or even at a patient's home.
It is an object of the present invention to provide an electromagnetic device for stimulating regions of the body, which has overlapping coils which can be fired sequentially or in unison depending on the particular required treatment conditions requiring both maximal stimulation (sufficient to cause contraction of muscle fibers) as well as submaximal stimulation (which will be sufficient to provide therapy but not to cause contraction of muscle fibers). The applications of the device can be divided into maximal and submaximal categories, in which the former requires significantly higher levels of inducting current than the latter. The maximal applications of the device include: one, non-invasive stimulation of the peripheral nervous system; two, treatment and/or prevention of atrophy (as would be therapeutic during recovery after a persons sustains a fracture, experiences paralysis of a limb or other body part, or undergoes surgery, such as ACL repair in the knee; and three, treatment of neurogenic bladder and bowel. Submaximal applications of the device include: one, treatment of musculoskeletal pain (e.g. back and neck pain, muscle spasms, and other forms of muscle or skeletal related pain); and two, treatment of arthritis.
It is an object of the invention to provide a device for the electromagnetic stimulation of selective anatomic regions of the body, utilizing an ergonomic wrap to facilitate accurate and targeted placement of the device for the stimulation of key nerves, muscles, and/or body tissues.
It is an object of the invention to provide a device to electromagnetically stimulate selective nerves muscles, and/or body tissues that is user friendly and capable of being used even by an unskilled patient in a home healthcare setting.
It is an object of the invention to provide a device to electromagnetically stimulate selective nerves, muscles, and body tissues to provide consistent therapy, with the ergonomic wrap targeting key nerves and eliminating the requirement for a highly trained operator to manipulate the device.
BACKGROUND OF THE INVENTION AND DESCRIPTION OF THE PRIOR ART
The concept of pulsed electromagnetic stimulation was first observed by the renowned scientist Michael Faraday in 1831. Faraday was able to demonstrate that time varying, or pulsed electromagnetic fields have the potential to induce current in a conductive object. Faraday's experimental setup was simple. He found that by passing strong electric current through a coil of wire he was able to produce pulsed electromagnetic stimuli. This pulsed electromagnetic stimulus was able to induce the flow of current in a nearby electrically conductive body.
In the years since the discoveries of Faraday, pulsed electromagnetic stimulators have found application in countless areas of scientific investigation. In 1965, the scientists Bickford and Freming demonstrated the use of electromagnetic stimulation to induce conduction within nerves of the face. Later, in 1982 Polson et al., U.S. Pat. No. 5,766,124 produced a device capable of stimulating peripheral nerves of the body. This device was able to stimulate peripheral nerves of the body sufficiently to cause muscle activity, recording the first evoked potentials from electromagnetic stimulation.
The ability of pulsed electromagnetic stimulation to induce electrical currents within tissues of the human body has prompted medical research in recent years with respect to the diagnosis, monitoring, and therapy of a variety of important conditions.
Electrical stimulation is a related technology that has been employed for man of years in the treatment of numerous medical conditions. One of the most commonly used for of electrical stimulation takes the form of what is known as TENS (Transcutaneous Electrical Nerve Stimulation) unit. These devices are designed specifically to stimulate nerve tissue that will block or interrupt pain signals being sent to the brain.
This class of electrical stimulating devices utilizes the principles of direct nerve stimulation to excite nerves. These technologies place electrodes directly on the skin or on occasions beneath the skin in a surgically implanted fashion. The electrodes carry wires, through which electrons flow and create a transfer of charge to the tissues and nerve cells beneath.
Electrical stimulation can be effective in stimulating superficial tissues, as stimulation is usually accomplished from small electrodes, with moderate voltage and current levels. Electrical stimulation, however, can cause significant skin irritation and burns as has been reported in a significant number of cases within the medical literature (Balmmaseda M T , et al. Burns in functional electric stimulation. Archives of Physical Medicine and Rehabilitation. July 1987; 68(7)452-53). In its alternative forms, such as with surgically implanted electrodes, electrical stimulation can be invasive and consequently associated with adverse side effects. The difficulties with electrical stimulation become especially significant as large excitation levels are required for more complete stimulation of nerves.
The limitations of electrical stimulation have prompted investigations into the possible applications of pulsed electromagnetic stimulation. The basic principal behind the concept of electromagnetic stimulation is that an electric current pulsed, or passed through a coil winding structure will generate an electromagnetic field. An electromagnetic field can, in turn, generate a current in any conductive material, such as nerves or other body tissues, within this field.
The electromagnetically induced electric field created by properly oriented pulsed electromagnetic stimulation thus accomplishes the result of transferring charge to cells of the body. This transferred charge can lead to nerve firing, muscle contraction, stimulation of cell signaling pathways causing cell growth, and a number of other effects.
In contrast to applications of electrical stimulation, pulsed electromagnetic stimulation does not require direct skin contact to induce nerve excitation. As a result, significantly higher levels of directed stimulation can be achieved though pulsed electromagnetic stimulation without the adverse effects of other technologies.
The ability of electromagnetic stimulation to induce electrical currents within tissues of the human body has prompted medical research in recent years with respect to the diagnosis, monitoring, and therapy of a variety of conditions, including: preventing and tr
Burnett Daniel
Mangrum Shane
Bockelman Mark
Maine & Asmus
LandOfFree
Method and apparatus for electromagnetic stimulation of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for electromagnetic stimulation of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for electromagnetic stimulation of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3228507