Method and apparatus for efficient synchronization in spread...

Pulse or digital communications – Receivers – Particular pulse demodulator or detector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S149000, C375S152000

Reexamination Certificate

active

06567482

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to telecommunications and more particularly to synchronizing transceivers in a direct sequence spread spectrum radio communications system.
BACKGROUND AND SUMMARY OF THE INVENTION
Modern communication systems, such as cellular and satellite radio systems, employ various modes of operation (analog, digital, and hybrid) and access techniques such as frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and hybrids of these techniques.
Digital cellular communications systems have expanded functionality for optimizing system capacity and supporting hierarchical cell structures, i.e., structures of macrocells, microcells, picocells, etc. The term “macrocell” generally refers to a cell having a size comparable to the sizes of cells in a conventional cellular telephone system (e.g., a radius of at least about 1 kilometer), and the terms “microcell” and “picocell” generally refer to progressively smaller cells. For example, a microcell might cover a public indoor or outdoor area, e.g., a convention center or a busy street, and a picocell might cover an office corridor or a floor of a high-rise building. From a radio coverage perspective, macrocells, microcells, and picocells may be distinct from one another or may overlap one another to handle different traffic patterns or radio environments.
An typical cellular mobile radiotelephone system includes one or more base stations (BSs) and multiple mobile stations (MSs). A base station generally includes a control and processing unit which is connected to a core network type node like a mobile switching center (MSC) which in turn is connected to the public switched telephone network (PSTN). General aspects of such cellular radiotelephone systems are known in the art. The base station handles a plurality of voice or data channels through a traffic channel transceiver which is controlled by the control and processing unit. Also, each base station includes a control channel transceiver which may be capable of handling more than one control channel also controlled by the control and processing unit. The control channel transceiver broadcasts control information over the control channel of the base station to mobiles tuned (or locked) onto that control channel.
The mobile receives the information broadcast on a control channel at its voice and control channel transceiver. The mobile processing unit evaluates the received control channel information, which includes the characteristics of cells that are candidates for the mobile to lock on to, and determines on which cell the mobile should lock. Advantageously, the received control channel information not only includes absolute information concerning the cell with which it is associated, but also contains relative information concerning other cells proximate to the cell with which the control channel is associated.
In North America, a digital cellular radiotelephone system using TDMA is called the digital advanced mobile phone service (D-AMPS), some of the characteristics of which are specified in the TIA/EIA/IS-136 standard published by the Telecommunications Industry Association and Electronic Industries Association (TIA/EIA). Another digital communication system using direct sequence CDMA PS-CDMA) is specified by the TIA/EIA/IS-95 standard, and a frequency hopping CDMA communication system is specified by the EIA SP 3389 standard (PCS 1900). The PCS 1900 standard is an implementation of the GSM system, which is common outside North America, that has been introduced for personal communication services (PCS) systems.
Several proposals for the next generation of digital cellular communication systems are currently under discussion in various standards setting organizations, which include the International Telecommunications Union (ITU), the European Telecommunications Standards Institute (ETSI), and Japan's Association of Radio Industries and Businesses (ARIB). An example third operation standard currently being proposed by ETSI is the Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA). Besides transmitting voice information, the next generation systems can be expected to carry packet data and to inter-operate with packet data networks that are also usually designed and based on industry-wide data standards such as the open system interface (OSI) model or the transmission control protocol/Internet protocol (TCP/IP) stack. These standards have been developed, whether formally or defacto, for many years, and the applications that use these protocols are readily available.
In most of these digital communication systems, communication channels are implemented by frequency modulating radio carrier signals, which have frequencies near 800 megahertz (MHz), 900 MHz, 1800 MHz, and 1900 MHz. In TDMA systems and even to varying extents in CDMA systems, each radio channel is divided into a series of time slots, each of which contains a block of information from a user. The time slots are grouped into successive frames that each have a predetermined duration, and successive frames may be grouped into a succession of what are usually called superframes. The kind of access technique (e.g., TDMA or CDMA) used by a communication system affects how user information is represented in the slots and frames, but current access techniques all use a slot/frame structure.
Time slots assigned to the same mobile user, which may not be consecutive time slots on the radio carrier, may be considered a logical channel assigned to the mobile user. During each time slot, a predetermined number of digital bits are transmitted according to the particular access technique (e.g., CDMA) used by the system. In addition to logical channels for voice or data traffic, cellular radio communication systems also provide logical channels for control messages, such as paging/access channels for call-setup messages exchanged by base and mobile stations and synchronization channels for broadcast messages used by mobile stations or other remote terminals for synchronizing their transceivers to the frame/slot/bit structures of the base stations. In general, the transmission bit rates of these different channels need not coincide and the lengths of the slots in the different channels need not be uniform. Moreover, third generation cellular communication systems being considered in Europe and Japan are asynchronous, meaning that the structure of one base station is not temporally related to the structure of another base station and that mobile does not know any of the structures in advance.
In such digital communication systems, a receiving terminal must find the timing reference of a transmitting terminal before any information transfer can take place. For a communication system using DS-CDMA, finding the timing reference corresponds to finding the boundaries of downlink (e.g., BS-to-MS) chips, symbols, and frames. These are sometimes called downlink chip-, symbol-, and frame-synchronizations, respectively. In this context, a frame is simply a block of data that can be independently detected and decoded. Frame lengths in today's systems typically fall in the range of ten milliseconds (ms) to twenty ms. This search for BS timing may be called a “cell search,” and it includes identification of BS-specific downlink scrambling codes that are features of current DS-CDMA communication systems.
A mobile or other remote terminal typically receives a signal that is a superposition (sum) of attenuated, faded, and disturbed versions of the signal transmitted by a BS. The slot and frame boundaries in the received signal are unknown to the MS to begin with, as are any BS-specific scrambling codes. The mobile therefore must detect and identify one or more BSs in the noise-like (for DS-CDMA) received signal and to identify the scrambling code used. In order to help synchronize the remote terminal to the BS and identify the BS-specific scrambling code, some communication systems provide that each BS signal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for efficient synchronization in spread... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for efficient synchronization in spread..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for efficient synchronization in spread... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3082057

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.