Method and apparatus for dispensing viscous material

Printing – Stenciling – Traveling-inker machines

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C101S120000, C101S124000, C118S413000

Reexamination Certificate

active

06286422

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Embodiments of the present invention relate generally to methods and devices for depositing viscous materials onto a printed wiring board. In one aspect, the present invention relates to methods and devices for compressing viscous materials, such as solder paste, through openings in a perforated substrate, such as a patterned screen or stencil.
2. Description of Related Art
Surface Mount Technology (SMT) involves placing circuit components onto circuit paths embedded on the upper surface of a printed wiring board and then soldering the components in place by a process called “reflow soldering”. Before the circuit component is placed on the printed wiring board, however, it is desirable to apply solder paste to the area on the printed wiring board where the component is to be soldered into place.
Conventional methods do exist to deposit (“print”) solder paste onto desired areas of a printed wiring board by forcing the paste through openings in a substrate (e.g., a stencil) placed in intimate contact with the printed wiring board.
U.S. Pat. No. 4,622,239 describes such a method and device for dispensing viscous materials. The method includes forcing a viscous material from a housing through an opening and depositing it onto a stencil between a pair of flexible members (parallel squeegee blades) which depend from the housing on either side of the opening and are in contact with the stencil. The ends of the flexible members are not connected and remain open ended. The viscous material, accordingly, is not contained within an enclosed area when it is deposited on the surface of the stencil. Movement of the housing and the flexible members horizontally across the stencil causes the trailing flexible member to force the viscous material through the openings in the stencil. U.S. Pat. No. 4,720,402 describes a similar method and device except that the leading flexible member is raised off of the stencil during movement of the housing.
U.S. Pat. Nos. 5,133,120 and 5,191,709 describe methods for filling through-holes of a printed wiring board via a mask with pressurized conductive filler material by means of a nozzle assembly unit having a nozzle tip member. The nozzle tip member, however, is designed only to dispense the pressurized conductive filler material through the mask to a single through-hole. The nozzle tip member then “scans” the printed wiring board for a second through-hole to fill. The nozzle tip member has a blunt end section which rests on the mask and a circular exit, the diameter of which may be increased or decreased by changing the nozzle tip member. The nozzle tip member dispenses the filler material without controlling unwanted flow of “excessive” filler material back through the stencil. Additionally, the nozzle tip member does not define a contained environment where “compression” of the filler material takes place through the mask followed by the immediate shearing off of the filler material within that contained environment from the surface of the stencil. In fact, the nozzle tip member itself provides no effective means for shearing off filler material from the top of the stencil, rather, after the through hole is filled and filler material “backs up” through the stencil, the nozzle tip member moves forward whereupon the “excessive” filler material is then wiped off by a separate, single, flexible squeegee member which is designed for unidirectional use only.
Unfortunately, these conventional efforts do not provide a contained environment for compression of viscous material through holes in a stencil and shearing of viscous material within the contained environment from the upper surface of the stencil. Reliance upon squeegee movement to force the viscous material, such as solder paste, through the stencil openings can lead to damage and eventual failure of both the squeegee blades and the stencil due to repeated friction. Since conventional efforts do not provide a contained environment in which compression and shearing is accomplished, waste of the viscous material is frequently encountered.
Conventional efforts, therefore, (1) fail to maximize the efficiency of printing solder paste onto a desired area of a printed wiring board and (2) fail to minimize waste of the solder paste during the printing process. A need therefore exists to develop a method for printing solder paste onto a printed wiring board and a device suitable for use therewith which overcomes the deficiencies of the conventional efforts.
Other prior viscous material dispensers utilizing compression print heads suffer from several drawbacks associated with the shearing blades utilized by the compression head. Particularly, the substantially rigid and non-compliant shearing blades do not readily maintain their respective intimate and sealing contact with the stencil, thereby causing undesirable paste leakage as the blades move away from contact with the stencil surface. Moreover, these prior blades do not readily conform to stencil surface variations, oftentimes damaging the stencil as they traverse over the stencil surface.
Another drawback associated with these prior dispenser assemblies is their respective use of relatively large and heavy disposable paste syringes or viscous material reservoirs, which are typically mounted upon the compression head, and which force the contained viscous material or the paste from the syringes to the distribution chamber of the compression head. These large syringes and dispensers are very difficult to service and replace, adversely affect the maneuverability of the compression head assembly, and require relatively costly and undesired structural modifications to the head assembly in order to properly strengthen the assembly. Furthermore, the supported reservoirs/dispensers need to be frequently replaced and/or filled, thereby requiring an interruption in the printing process and prolonging production time and decreasing production efficiency. The use of even larger syringes and dispensers reduces the frequency of replacement but further increases the probability of compression head structural damage, further adversely impacts the maneuverability of the compression head, and further complicates the required assembly maintenance operation.
The present invention is therefore also directed at substantially eliminating and/or decreasing material leakage and damage to the stencil by providing substantially self-compliant shearing blades which are selectively and flexibly moveable in response to variations and/or incidental changes in the pressure and surface variations of the stencil. The present invention is further directed to the use of relatively large viscous material reservoirs in a manner which substantially overcomes the previously-delineated drawbacks.
SUMMARY OF THE INVENTION
The present invention includes a novel apparatus and method for dispensing viscous material through openings in a stencil. Embodiments of the present invention include a process herein referred to as “compression printing” wherein pressure is applied to a viscous material within a contained environment defined by a compression head cap so as to compress it through openings in a stencil.
The apparatus of the present invention includes a reservoir containing viscous material which is operably connected to a pressure source. The reservoir is in fluid communication with a housing which terminates in a substantially uniform opening defined by a compression head cap formed from contiguous walls. During operation of the apparatus, the compression head cap is placed in contact with a stencil having a plurality of openings therein. The compression head cap and the stencil form a contained environment. The pressure source then applies pressure against the viscous material contained in the reservoir forcing it from the reservoir into the housing and to the compression head cap. The contiguous walls of the compression head cap act to contain and to direct flow of the pressurized viscous material to the top surface of the stencil and then th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for dispensing viscous material does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for dispensing viscous material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for dispensing viscous material will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465290

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.