Method and apparatus for disinfecting a water cooler...

Dispensing – Processes of dispensing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S185100, C222S190000, C210S760000

Reexamination Certificate

active

06561382

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable
REFERENCE TO A “MICROFICHE APPENDIX”
Not applicable
BACKGROUND
The present invention relates to bottled water dispensers, and more particularly to an improved bottled water dispenser for dispensing water that has been sanitized using ozone. More particularly, the present invention relates to an improved method and apparatus for sanitizing a water cooler reservoir, its dispensing spigots, and the flow channel that connects the reservoir and spigot(s).
One of the most common types of commercially available bottled water dispensers is a floor standing cabinet having an open top that receives a large inverted bottle. The bottle is typically of a plastic or glass material having a constricted neck. The bottle is turned upside down and placed on the top of the cabinet with the neck of the bottle extending into a water filled reservoir. The water seeks its own level in the reservoir during use.
The cabinet provides one or more spigots for dispensing water, typically one being for cooled water, one being for ambient temperature water, and optionally a hot water spigot can be provided. As a user draws water from a spigot dispenser, the liquid level in the reservoir drops until it falls below the neck of the bottle at which time water flows from the bottle and bubbles enter the bottle until pressure has equalized.
These types of inverted bottle water dispensers are sold by a number of companies in the United States. Many are refrigerated. Some have heating elements. There are other types of water dispensers that employ a cabinet with spigots. Some receive water directly from a piped source. Others pump water from a contained water bottle or source that is hidden inside the cabinet.
One of the problems with bottled water dispensers such as the inverted bottle type is that of cleansing the unit from time to time. Because the top is not air tight, it “breathes” so that bacteria can easily enter the reservoir over a period of time.
Five gallon bottles that are typically used in combination with a cabinet are also a source of bacteria and germs. Most of these bottles are transported on trucks where the bottles are exposed to outside air. They are handled by operators that typically grab the bottle at the neck, the very part of the bottle that communicates with a water reservoir during use. Unfortunately, it is difficult to convince every person that handles these bottles to wash their hands frequently enough.
In order to properly sanitize such a water dispenser or cooler, the user must carefully clean the neck of the bottle prior to combining the bottle with the cabinet. Further, the user should drain and sanitize the reservoir from time to time. The cleansing of the reservoir in such a water dispenser is a time consuming project that is typically not done often enough. The spigots are also in need of sanitization as they are often contacted by unsanitary drinking containers, human hands and children's mouths.
SUMMARY
The present invention provides an improved, self sanitizing water dispenser apparatus as well as a method for generating ozone for cleaning the reservoir and the water contained within it.
The present invention provides a self sanitizing bottled water dispenser that includes a cabinet holding a supply bottle of water to be dispensed. In some embodiments, water is pumped to the reservoir from the supply bottle. In other embodiments, water is piped directly to the reservoir from a water pipe system. Spigots on the cabinet dispense the water. A reservoir can receive flow from the supply bottle.
The bottle contains water to be dispensed, and provides a neck portion and a dispensing outlet portion.
A reservoir contained within the cabinet next to the upper end portion thereof contains water with a water surface that communicates with a bottle neck during use. Spigots dispense cold, ambient and/or hot water. A refrigeration system cools the water within the reservoir. A diffuser (eg. ring diffuser) emits bubbles into the reservoir, the diffuser being disposed within the reservoir at the lower end portion thereof. The diffuser can be placed next to the reservoir wall so that bubbles emitted by the diffuser help scrub the wall.
An ozone generator module is supported within the housing. Air flow lines communicate with an air pump to carry ozone from the ozone generator housing to the diffuser. A blower can be provided to generate air flow, and a flow line connects the blower to the ozone generator housing.
A timer can be provided for activating the ozone generator at a selected time and for a selected time interval. The ozone generator is activated for a selected time interval (e.g. a few minutes). After the selected time interval, the ozone generator is shut off.
The diffuser is preferably positioned around the side of the reservoir at the bottom of the reservoir, close to the intersection of the reservoir bottom wall and reservoir side wall.
The diffuser can be preferably circular in shape, and can have a composite construction that includes a porous core that is partially covered with a non-porous coating.
A preferred embodiment provides a dispenser with water cooler spigot(s) capable of both being automatically sanitized with ozone as well as providing a means for sanitizing the water channel between the reservoir and the spigot.
The ozone generating module cleanses and sanitizes the water cooler reservoir.
Two additional areas within the water cooler can be addressed by the method and apparatus of the present invention to completely sanitize water dispenser/cooler. The first is the water channel, comprised of the watercourse within the spigot itself, lying behind the spigot valve and the remaining watercourse between the spigot and the cooler reservoir. The second area is the spigot portion which is ahead of the valve. This spigot portion is the inside of the spigot dispenser tip that is alternately exposed to water, air, unsanitary drinking containers, children's mouths and occasional fingers.
In one embodiment the integration of two ozone gas supply sanitation channels into a spigot or faucet with associated connectors and components is disclosed. The first ozone channel addresses the water channel. This first ozone channel is open to the water channel, immediately behind the spigot valve and is connected to the primary ozone supply. The ozone gas supply flow stream to the reservoir diffuser can be provided by means of a tee connection outside of the cooler reservoir. Incorporated within this ozone channel of the spigot is a small ozone diffuser stone whose permeability is preferably matched to that of the reservoir diffuser stone ring. This serves to match supply pressure facilitating proper functioning. The internal surface area of the stone's volume is much smaller than that of the diffuser ring, thus insuring that a proportionally smaller amount of ozone gas is transferred to the small volume of water within the water channel. The existing ozone generating module check valve eliminates water from siphoning into the ozone generator.
The second ozone channel can consist of a preferably tangential opening that tangentially intersects the spigot dispenser tip channel to sanitize the spigot tip outlet. Tangential flow creates a downward spiral flow of heavier than air ozone gas that can be used to completely engulf the outlet channel's surface and the valve seat. This channel extends to the air chamber at the top of the water cooler reservoir. The build-up of ozone above the water level within the reservoir has sufficient concentration and pressure to serve as the supply for sanitizing the spigot tip outlet.
Since the spigot tip outlet is exposed to air, with the recycled ozone transferring directly to air, the need for a diffuser is eliminated. The elevation of the orifice eliminates water build-up in the chase after dispensing. Ozone gas is supplied to the spigot only when the ozone generating module is in operation.


REFERENCES:
patent: 3448045 (1969-06-01), Hess et al.
patent: 3692180 (1972-09-01), La

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for disinfecting a water cooler... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for disinfecting a water cooler..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for disinfecting a water cooler... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3013557

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.