Telecommunications – Radiotelephone system – Zoned or cellular telephone system
Reexamination Certificate
1998-12-29
2001-11-20
Maung, Nay (Department: 2681)
Telecommunications
Radiotelephone system
Zoned or cellular telephone system
C455S067150, C455S517000, C455S562100
Reexamination Certificate
active
06321082
ABSTRACT:
CROSS-REFERENCES TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the invention
The present invention relates to a method and apparatus for directional radio communication in which signals between a first station and a second station may be transmitted only in certain directions. In particular, but not exclusively, the present invention is applicable to cellular communication networks using space division multiple access.
2. Description of the Related Art Including Information Disclosed Under 37 C.F.R. 1.97 and 1.98.
With currently implemented cellular communication networks, a base transceiver station (BTS) is provided which transmits signals intended for a given mobile station (MS), which may be a mobile telephone, throughout a cell or cell sector served by that base transceiver station. However, space division multiple access (SDMA) systems have now been proposed. In a space division multiple access system, the base transceiver station will not transmit signals intended for a given mobile station throughout the cell or cell sector but will only transmit the signal in the beam direction from which a signal from the mobile station is received. SDMA systems may also permit the base transceiver station to determine the direction from which signals from the mobile station are received.
SDMA systems may allow a number of advantages over existing systems to be achieved. In particular, as the beam which is transmitted by the BTS may only be transmitted in a particular direction and accordingly may be relatively narrow, the power of the transceiver can be concentrated into that narrow beam. It is believed that this results in a better signal to noise ratio with both the signals transmitted from the base transceiver station and the signals received by the base transceiver station. Additionally, as a result of the directionality of the base transceiver station, an improvement in the signal to interference ratio of the signal received by the base transceiver station can be achieved. Furthermore, in the transmitting direction, the directionality of the BTS allows energy to be concentrated into a narrow beam so that the signal transmitted to the BTS can reach far away located mobile stations with lower power levels than required by a conventional BTS. This may allow mobile stations to operate successfully at greater distances from the base transceiver station which in turn means that the size of each cell or cell sector of the cellular network can be increased. As a consequence of the larger cell size, the number of base stations which are required can also be reduced leading to lower network costs. SDMA systems generally require a number of antenna elements in order to achieve the required plurality of different beam directions in which signals can be transmitted and received. The provision of a plurality of antenna elements increases the sensitivity of the BTS to received signals. This means that larger cell sizes do not adversely affect the reception of signals by the BTS from mobile stations.
SDMA systems may also increase the capacity of the system, that is the number of mobile stations which can be simultaneously supported by the system is increased. This is due to the directional nature of the communication which means that the BTS will pick up less interference from mobile stations in other cells using the same frequency. The BTS will generate less interference to other mobile stations in other cells using the same frequency when communicating with a given MS in the associated cell.
Ultimately, it is believed that SDMA systems will allow the same frequency to be used simultaneously to transmit to two or even more different mobile stations which are arranged at different locations within the same cell. This can lead to a significant increase in the amount of traffic which can be carried by cellular networks.
SDMA systems can be implemented in analogue and digital cellular networks and may be incorporated in the various existing standards such as GSM, DCS 1800, TACS, AMPS and NMT. SDMA systems can also be used in conjunction with other existing multiple access techniques such as time division multiple access (TDMA), code division multiple access (CDMA) and frequency division multiple access (FDMA) techniques.
One problem with SDMA systems is that the direction in which signals should be transmitted to a mobile station needs to be determined. In certain circumstances, a relatively narrow beam will be used to send a signal from a base transceiver station to a mobile station. Therefore, the direction of that mobile station needs to be assessed reasonably accurately. As is known, a signal from a mobile station will generally follow several paths to the BTS. Those plurality of paths are generally referred to as multipaths. A given signal which is transmitted by the mobile station may then be received by the base transceiver station from more than one direction due to these multipath effects.
An additional problem is that the direction in which a signal is to be transmitted by the BTS to the mobile station is determined on the basis of the uplink signals received by the BTS from the mobile station. However, the frequencies of the down link signals transmitted from the mobile station to the BTS are different from the frequencies used for the signals transmitted by the BTS to the mobile station. The difference in the frequencies used in the uplink and downlink signals means that the behaviour of the channel in the uplink direction may be different from the behaviour of the channel in the downlink direction. Thus the optimum direction determined for the uplink signals will not always be the optimum direction for the downlink signals.
It is therefore an aim of certain embodiments of the present invention to address these difficulties.
BRIEF SUMMARY OF THE INVENTION
According to a first aspect of the present invention, there is provided a method of directional radio communication in a mobile communication network between a first station and a second mobile station, said method comprising the steps of:
receiving at the first station communication data transmitted by said second station, wherein the communication data can travel via one or more of a plurality of signal paths and is received as a set of signals from one or more of a plurality of different beam directions;
determining a first beam direction corresponding to the beam direction from which a first one of said signals is received by said first station representing a shortest one of said signal paths and a second beam direction corresponding to the beam direction from which one of said signals having the greatest signal strength is received; and
where the first and second beam directions are different, transmitting communication data from said first station to said second station in both said first and second beam directions.
By transmitting communication data in both the first and second beam directions, the probability that the signal from the first station will reach the second station is increased. Preferably, the method comprises the step of defining at the first station a plurality of beam directions for transmitting a radiation beam, wherein each of the beam directions is individually selectable.
In the determining step, at least one of the first and second beam directions is determined from the respective channel impulse response. The channel impulse response may be determined for each one of said set of signals. The determined channel impulse responses may then be compared to determine at least one of said first and second beam directions.
The channel impulse response may be determined by correlating a known portion of the communication data in each of the signals received at the first station with a reference version of that known portion.
The method may include the step of monitoring a distance parameter representative of the distance between the first and second stations, whereas if the difference between the fir
Maung Nay
Nokia Telecommunications Oy
Perman & Green LLP
West L
LandOfFree
Method and apparatus for directional radio communication does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for directional radio communication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for directional radio communication will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2596921