Method and apparatus for direct laser cutting of metal stents

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121840, C219S121700

Reexamination Certificate

active

06369355

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to improvements in the manufacture of expandable metal stents and, more particularly, to new and improved methods and apparatus for direct laser cutting of metal stents and providing stents of enhanced structural quality.
Stents are expandable endoprosthesis devices which are adapted to be implanted into a patient's body lumen, such as a blood vessel, to maintain the patency of the vessel. These devices are typically used in the treatment of atherosclerotic stenosis in blood vessels and the like.
In the medical arts, stents are generally tubular-shaped devices which function to hold open a segment of a blood vessel or other anatomical lumen. They are particularly suitable for use to support and hold back a dissected arterial lining which can occlude the fluid passageway.
Various means have been provided to deliver and implant stents. One method frequently described for delivering a stent to a desired intraluminal location includes mounting the expandable stent on an expandable member, such as a balloon, provided on the distal end of an intravascular catheter, advancing the catheter to the desired location within the patient's body lumen, inflating the balloon on the catheter to expand the stent into a permanent expanded condition and then deflating the balloon and removing the catheter.
One example of a particularly useful expandable stent is a stent which is relatively flexible along its longitudinal axis to facilitate delivery through tortuous body lumens, but which is stiff and stable enough radially in an expanded condition to maintain the patency of a body lumen such as an artery when implanted within the lumen. Such a desirable stent typically includes a plurality of radially expandable cylindrical elements which are relatively independent in their ability to expand and to flex relative to one another. The individual radially expandable cylindrical elements of the stent are precisely dimensioned so as to be longitudinally shorter than their own diameters. Interconnecting elements or struts extending between adjacent cylindrical elements provide increased stability and a preferable position to prevent warping of the stent when it is expanded. The resulting stent structure is a series of radially expandable cylindrical elements which are spaced longitudinally close enough so that small dissections in the wall of a body lumen may be pressed back into position against the lumenal wall, but not so close as to compromise the longitudinal flexibilities of the stent. The individual cylindrical elements may rotate slightly relative to adjacent cylindrical elements without significant deformation, cumulatively giving a stent which is flexible along its length and about its longitudinal axis, but is still very stiff in the radial direction in order to resist collapse.
The aforedescribed stents generally have a precisely layed out circumferential undulating pattern, e.g. serpentine. The transverse cross-section of the undulating component of the cylindrical element is relatively small and preferably has an apect ratio of about two to one to about 0.5 to one. A one to one apect ratio has been found particularly suitable. The open reticulated structure of the stent allows for the perfusion of blood over a large portion of the arterial wall which can improve the healing and repair of a damaged arterial lining.
The radial expansion of the expandable cylinder deforms the undulating pattern similar to changes in a waveform which result from decreasing the waveform's amplitude and the frequency. Preferably, the undulating patterns of the individual cylindrical structures are in phase with each other in order to prevent the contraction of the stent along its length when it is expanded. The cylindrical structures of the stent are plastically deformed when expanded so that the stent will remain in the expanded condition and, therefore, they must be sufficiently rigid when expanded to prevent their collapse in use. During expansion of the stent, portions of the undulating pattern will tip outwardly resulting in projecting members on the outer surface of the expanded stent. These projecting members tip radially outwardly from the outer surface of the stent and embed in the vessel wall and help secure the expanded stent so that it does not move once it is implanted.
The elongated elements which interconnect adjacent cylindrical elements should have a precisely defined transverse cross-section similar to the transverse dimensions of the undulating components of the expandable cylindrical elements. The interconnecting elements may be formed as a unitary structure with the expandable cylindrical elements from the same intermediate product, such as a tubular element, or they may be formed independently and connected by suitable means, such as by welding or by mechanically securing the ends of the interconnecting elements to the ends of the expandable cylindrical elements. Preferably, all of the interconnecting elements of a stent are joined at either the peaks or the valleys of the undulating structure of the cylindrical elements which form the stent. In this manner, there is no shortening of the stent upon expansion.
The number and location of elements interconnecting adjacent cylindrical elements can be varied in order to develop the desired longitudinal flexibility in the stent structure both in the unexpanded, as well as the expanded condition. These properties are important to minimize alteration of the natural physiology of the body lumen into which the stent is implanted and to maintain the compliance of the body lumen which is internally supported by the stent. Generally, the greater the longitudinal flexibility of the stent, the easier and the more safely it can be delivered to the implantation site.
It will be apparent from the foregoing that conventional stents are very high precision, relatively fragile devices and, ideally, the most desirable metal stents incorporate a fine precision structure cut from a very small diameter, thin-walled cylindrical tube. In this regard, it is extremely important to make precisely dimensioned, smooth, narrow cuts in the stainless tubes in extremely fine geometries without damaging the narrow struts that make up the stent structure. While the various cutting processes, including chemical etching, heretofore utilized by the prior art to form such expandable metal stents, have been adequate, improvements have been sought to provide stents of enhanced structural quality in terms of resolution, reliability and yield.
Accordingly, those concerned with the development, manufacture and use of metal stents have long recognized the need for improved manufacturing processes for such stents. The present invention fulfills these needs.
SUMMARY OF THE INVENTION
Briefly, and in general terms, the present invention provides a new and improved method and apparatus for direct laser cutting of metal stents enabling greater precision, reliability, structural integrity and overall quality, without burrs, slag or other imperfections which might otherwise hamper stent integrity and performance.
Basically, the present invention provides an improved system for producing metal stents with a fine precision structure cut from a small diameter, thin-walled, cylindrical tube. The tubes are typically made of stainless steel and are fixtured under a laser and positioned utilizing a CNC to generate a very intricate and precise pattern. Due to the thin-wall and the small geometry of the stent pattern, it is necessary to have very precise control of the laser, its power level, the focus spot size, and the precise positioning of the laser cutting path.
In a presently preferred embodiment of the invention, in order to minimize the heat input, which prevents thermal distortion, uncontrolled burn out of the metal, and metallurgical damage due to excessive heat, a Q-switched Nd/YAG laser that is frequency doubled to produce a green beam at 532 nanometers is utilized. Q-switching produces very short pulses (<100 nS)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for direct laser cutting of metal stents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for direct laser cutting of metal stents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for direct laser cutting of metal stents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2932104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.