Telegraphy – Systems – Position coordinate determination for writing
Reexamination Certificate
2001-03-01
2002-05-28
Mengistu, Amare (Department: 2673)
Telegraphy
Systems
Position coordinate determination for writing
C178S019010
Reexamination Certificate
active
06396005
ABSTRACT:
FIELD OF THE INVENTION
The invention generally relates to electrical technology and, more specifically, to a method and apparatus for diminishing grid complexity in a tablet.
BACKGROUND OF THE INVENTION
Tablets are conventionally used to enter data, such as drawings or scripted text, into an electrical system, such as a computer. A user manipulates a transducer, such as a pen or a mouse, over the tablet to enter the data.
Tablets include complex grid patterns to accurately identify the position of the pointer on the tablet. U.S. Pat. No. 4,948,926 to Murakami et al., hereby incorporated by reference, illustrates an exemplary complex grid pattern.
Complex grid patterns are undesirable because they employ more grid lines, more internal and external interconnections and more selection multiplexers and other circuitry to operate them. Numerous lines and interconnections require narrower lines and less space between them and, therefore, require more elaborate and expensive grid processes and materials, such as etched copper on epoxy fiberglass, in contrast to less expensive, but less detailed, printed methods such as silver ink on Mylar® sheet. Therefore, there is a need for less complex and less expensive grid patterns, and their corresponding position resolving algorithms, that can accurately identify the position of a transducer, such as a pen or cursor, on a tablet or digitizer surface.
SUMMARY OF THE INVENTION
The invention solves the above-mentioned problems in the art and other problems which will be understood by those skilled in the art upon reading and understanding the specification. The invention provides a method and apparatus for diminishing grid complexity in a tablet. In all embodiments of the invention, reference to a transducer includes any device generating a magnetic-field including a pen, a cursor, a mouse, a puck or other related devices.
The invention provides a two-wire resolution grid, or antenna wire pattern, consisting of a first serpentine, and a second serpentine overlapping and substantially coplanar with the first serpentine. The second serpentine is offset from the first serpentine in the direction of the axes of the serpentines. Signals from the first and second serpentines are analyzed to determine transducer position within a period of a serpentine in the axis direction. In another embodiment, first and second serpentines are foldback serpentines. In yet another embodiment, the second serpentine is offset from the first serpentine by approximately ninety degrees, or approximately one quarter of one period. In one embodiment, the loop size of first and second serpentines is about one inch, resulting in a period of about two inches.
The two serpentine patterns operate together with signal processing algorithms, and their associated circuitry, to determine transducer position within a period to high dimensional accuracy. The signal pattern of one wire operates to compensate for the signal pattern of the other wire to increase linearity and, therefore, improve position resolution and accuracy. Additionally, the two-wire grid linearity helps optimize or minimize transducer tilt error, where tilting the transducer causes an undesired location change in the data.
These two-wire resolution grids are capable of determining fine position over an about two inch period when used with a pen transducer. This approximately two-inch resolution distance is limited by the signal strength and characteristics of existing pen transducers. Larger loop sizes can proportionally increase resolution distance when utilized with a cursor or other device having a larger diameter signal coil.
In one embodiment of the invention, loops of the serpentines of a resolution grid are rectangular. In a further embodiment, loops of the serpentines of a resolution grid are rounded. In yet another embodiment, loops of the serpentines of a resolution grid are angled.
In a further embodiment, the invention provides a three-wire resolution grid consisting of a first serpentine, a second serpentine overlapping and substantially coplanar with the first serpentine and a third serpentine overlapping and substantially coplanar with the first and second serpentines. The second serpentine is offset from the first serpentine in the direction of the axes of the serpentines. The third serpentine is offset from both the first and second serpentines in the direction of the axes of the serpentines. Signals from the serpentines are analyzed to determine transducer position within a period in the axis direction. Use of three wires improves linearity of the signal processing over a period of the resolution grid to increase feasible resolution distance relative to a two-wire resolution grid when used with a given transducer. As an example, if a two-wire grid is limited to a period of two inches due to transducer characteristics, a three-wire resolution grid would be capable of spanning a distance proportional to the number of wires, i.e., a period of three inches. In another embodiment, first, second and third serpentines are foldback serpentines. In yet another embodiment, the second serpentine is offset from the first serpentine by approximately sixty degrees and the third serpentine is offset from the first serpentine by approximately one hundred twenty degrees.
In a still further embodiment, the invention provides a multi-wire resolution grid comprising three or more overlapping and substantially coplanar serpentines. Each serpentine is offset from the first serpentine in the direction of the axes of the serpentines. Signals from the serpentines are analyzed to determine transducer position within a period of a serpentine in the axis direction. Use of three or more wires improves linearity of the signal processing over a period of the multi-wire resolution grid to increase feasible resolution distance relative to a resolution grid using fewer wires when used with a given transducer. As an example, if a three-wire grid is limited to a period of three inches due to transducer characteristics, a five-wire resolution grid would be capable of spanning a distance proportional to the number of wires, i.e., a period of five inches. In another embodiment, each serpentine is a foldback serpentine. In yet another embodiment, each serpentine is offset from other serpentines by an amount equal to approximately one hundred eighty degrees divided by the total number of serpentines.
In one embodiment, the invention provides a direction grid consisting of one two-wire resolution grid. The one two-wire resolution grid consists of one period of the first and second serpentines such that absolute transducer position is determinable in one dimension in the direction of the axis of the resolution grid. In a further embodiment, the first and second serpentines are foldback serpentines.
In another embodiment, the invention provides a directional grid consisting of two substantially coplanar resolution grids overlaid upon a substantially common axis. A first, or fine, resolution grid includes two or more periods. The fine resolution grid consists of a two-wire resolution grid. A second, or coarse, resolution grid includes one or more periods. The coarse resolution grid consists of a multi-wire resolution grid. The length of the period of the coarse resolution grid is greater than the length of the period of the fine resolution grid. The one or more periods of the coarse resolution grid substantially cover the multiple periods of the fine resolution grid. Relative position within a period of the fine resolution grid is compared to the relative position within a period of the coarse resolution grid such that the period of the fine resolution grid generating the signal can be determined and an absolute transducer position in one axis can be calculated. In this manner, accuracy can be defined by the period of the fine resolution grid while the coarse resolution grid allows determination of which period generated the signal. In yet another embodiment, the resolution grids are substantially concentric. In a further embodiment, the r
Fowler Billy C.
Jaecks Howard K.
Rodgers James L.
Mengistu Amare
Rodgers Technology Center, Inc.
LandOfFree
Method and apparatus for diminishing grid complexity in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for diminishing grid complexity in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for diminishing grid complexity in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2901918