Method and apparatus for diagnosing neurological impairment

Surgery – Diagnostic testing – Eye or testing by visual stimulus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S557000, C600S300000

Reexamination Certificate

active

06702756

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to methods and apparatuses for diagnosing or monitoring neurological impairments such as multiple sclerosis.
Slowing of the nervous system occurs as a consequence of both normal aging and neurological impairment. It is well documented that older individuals require a longer period of time to process information relative to younger individuals. It is generally believed that the slowing in the nervous system was mainly related to decision time and motor response because much of the research had focused on motor output (i.e., reaction time) relative to sensory input. However, sensory input and global higher order brain processing may also be significantly affected by neurological impairment, both as a result of injury or disease, or as a result of normal aging.
Multiple sclerosis (MS) is a disease involving neurological impairment which often begins with a history of fluctuating, hard to describe, and seemingly minor, symptoms that family and friends dismiss or discount. These symptoms often resolve without treatment, but continue to return. The initial symptoms of MS are most often: difficulty in walking; abnormal sensations such as numbness or “pins and needles”; and pain and loss of vision due to optic neuritis, an inflammation of the optic nerve. Less common initial symptoms may include: tremor; incoordination; slurred speech; sudden onset of paralysis similar to a stroke; and a decline in cognitive function.
These symptoms are a direct result of demyelination, the destruction of myelin—the fatty sheath that surrounds and insulates nerve fibers in the central nervous system, as well as axonal injury and neuronal death. This impairs transmission of nerve impulses to muscles and other organs.
When doctors suspect multiple sclerosis, they thoroughly evaluate the nervous system as part of the physical examination. Signs that the nervous system isn't functioning properly, such as uncoordinated eye movements, muscle weakness, or numbness in scattered parts of the body; other findings such as inflammation of the optic nerve; and symptoms that wax and wane make the diagnosis fairly certain.
Diagnostic imaging using magnetic resonance imaging (MRI) is a sensitive technique, possibly revealing areas of the brain that have lost myelin. An MRI scan may even distinguish areas of active, recent demyelination from areas in which demyelination took place some time ago. In an evoked potentials test, electrical responses in the brain are recorded when nerves are stimulated. For example, normally the brain responds to a flash of light or a noise with characteristic patterns of electrical activity; in people with multiple sclerosis, the response may be slower because signal conduction along demyelinated nerve fibers is impaired.
One of the problems in assessing a patient with neurological impairment is that the tests often are expensive (e.g., MRI), time-consuming, and/or invasive. In respect of MS, there is no single measure or test that reliably detects pathologic change. The most common clinical test used to measure disease burden of MS is the extended disability status scale (EDSS) which primarily measures motor output, but it is insensitive to change. Evoked potentials evaluate nerve conduction in some central pathways, but have not proven to be a sensitive measure of disease progression. MRI is useful, but it monitors or detects anatomical changes that follow nerve injury (atrophy and black holes). Moreover, white matter has appeared normal on MRI, yet it is often abnormal when assessed by magnetic resonance spectroscopy (MRS). MRS assesses brain metabolism which is an indication of nerve ‘health’ not nerve dysfunction. Since physiologic changes precede irreversible anatomic changes, a tool that assesses physiological function would be valuable in neurological assessment and disease burden.
Sensory symptoms such as numbness, “pins and needles”, pain, loss or interruption of vision (e.g., optic neuritis) tend to precede symptoms of motor dysfunction. Unfortunately, neurological diagnostic/monitoring tests tend to measure motor output (e.g., EDSS) as opposed to measuring the function of sensory pathways. Therefore, tests which measure impairment of sensory pathways, or global higher order brain processing, may detect neurological impairment earlier and more reliably than those tests which measure motor output.
Furthermore, since myelin injury causes reduced nerve conduction, central conduction times may be considered as a useful outcome measure. More specifically, lesions to the pathway connecting the two hemispheres, the corpus callosum, is well noted in the multiple sclerosis literature. Given that interhemispheric transfer times (IHTTs) represent global higher order brain processing, the integration of information between and within hemispheres, deterioration of IHTTs may be an indicator of cognitive dysfunction. There is a need in the art for tests that may measure IHTT as part of a clinical battery for neurological impairment.
SUMMARY OF THE INVENTION
The present invention is directed to methods and apparatuses for the diagnosis or monitoring, or both, of neurological impairments by providing an objective measurement of neural function that is relatively inexpensive, easy and quick to administer, and noninvasive. It is an objective technique that also has demonstrable sensitivity to central nerve conduction. The technique may employ a lateralized perspective such that neural function within and between cerebral hemispheres is measured. The lateralized perspective also allows assessment to one side of the body, which is important since many patients and doctors report that symptoms are sometimes lateralized to one side of the body, or to half a visual field.
The present invention was devised to measure sensory functioning of the nervous system without confounding reaction time which includes decision time and motor response time. The invention was also devised so that an estimate of interhemispheric transfer time (IHTT) between cerebral hemispheres could be calculated. High IHTTs would indicate that there is a slowing of central, higher order neural processing as opposed to peripheral neural processing which is typically measured in reaction time tasks. The methods of the present invention demonstrate a sensitivity to both a neurological sensory impairment and interhemispheric transfer dysfunction in patients exhibiting a neurological impairment and therefore may be used in the diagnosis and monitoring of such impairments in patients.
The applicants have found that threshold of simultaneity, which is the minimum temporal separation of two stimuli presented to a patient necessary for a patient to perceive the two stimuli as sequential rather than simultaneous, is greatly increased in patients who suffer from a neurological impairment. Pairs of stimuli are delivered in bilateral or unilateral situations. Interhemispheric transfer is required with bilateral stimulation since each hemisphere receives information regarding the stimulus that was presented to the opposite visual field or to opposite side of the body. That is, since a comparison has to be made regarding the onset of each stimulus, the information needs to be integrated from each hemisphere. The point at which a person perceives the onset of two stimuli as occurring simultaneously is the simultaneity threshold. Thus, the simultaneity threshold is the smallest interval that separates the onset of two stimuli which is perceived by the patient as a separation. The applicants have found that simultaneity thresholds and IHTTs are significantly greater in patients who suffer neurological impairment.
The applicants have further found that the threshold of simultaneity can be quantified and measured against the patient's own baseline data, and data from groups which include the subject patient, such as groups based on age and sex, in order to measure neural degeneration or regeneration.
Therefore, in one aspect, the invention comprises a method of diagnosis of or monito

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for diagnosing neurological impairment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for diagnosing neurological impairment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for diagnosing neurological impairment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214091

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.