Method and apparatus for determining the performance of a...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Construction or agricultural-type vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S207000

Reexamination Certificate

active

06188942

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to a method and apparatus for determining an amount of compactive energy being delivered to a material to be compacted and, more particularly, to a method and apparatus for monitoring the compaction of a material to be compacted as a function of an amount of compactive energy being delivered to the material.
BACKGROUND ART
It is often desired to compact a material for the purpose of reducing the material to a desired density. Examples of applications where compaction is desired include construction sites to prevent further natural settling of the ground, landfill sites where it is desired to compact the landfill waste into as small a volume as possible, and blacktop roads and parking lots, where it is desired to prevent further settling of the blacktop, and hence prevent future cracking of the road or parking lot.
The amount of compaction of these materials must be monitored by some means to determine when the material is compressed to a desired density. In the past, various methods for determining an amount of compaction have been employed. For example, direct measurements of material density may be performed at either random or predetermined locations. The measurements may be made by removing core samples of the material for density measurements, or by sand or water displacement devices. Alternatively, the measurements may be made by some means which does not disturb the material, such as by nuclear gauges, electromagnetic measurement devices, and the like.
The above methods for determining the density of the material being compacted only provide indications of density at the sample locations chosen for testing. In addition, the above methods require additional time and work by the persons performing the tests. This additional time and work increases costs and reduces efficiency of the compaction process. Furthermore, the methods discussed above which disturb portions of the compacted area are not desirable in some situations, e.g., when compacting blacktop in a parking lot, as the disturbance of the material adversely affects the finished product.
In U.S. Pat. No. 5,471,391, Gudat et al. discloses a method and apparatus whereby compacting machines monitor their position with respect to the terrain being compacted, and indicate on a display a number of times portions of the terrain have been passed over by the compactor. In this system, a determination is made as to how many passes would be needed to complete compaction. When the desired number of passes is made over an area, compaction is considered to be complete.
The method and apparatus disclosed by Gudat et al. works well to provide an estimated evaluation of the degree of compaction of a site. However, the method does not measure or determine directly the amount of compaction performed. Therefore, some accuracy is sacrificed to provide the advantage of a real time indication of when compaction is considered to be complete.
The above discussion indicates that many methods have been devised to measure or estimate the amount of compaction that has been performed on a material. However, it is desired to devise a method which can directly measure an amount of compaction, in real time, of the entire volume of material being compacted without intrusively disturbing the material.
The present invention is directed to overcoming one or more of the problems as set forth above.
DISCLOSURE OF THE INVENTION
In one aspect of the present invention a method for determining compaction performance of a material by a compactor having a known compaction width is disclosed. The method includes the steps of determining a lift thickness of the material, determining a rolling resistance of the compactor, determining a level of compactive energy delivered to the material as a function of the compaction width, the lift thickness and the rolling resistance, and determining the compaction performance of the material as a function of the compactive energy.
In another aspect of the present invention a method for determining compaction performance of a material by a compactor is disclosed. The method includes the steps of determining a ground speed of the compactor, determining a rolling resistance of the compactor, determining a propelling power of the compactor as a function of the ground speed and the rolling resistance, and determining the compaction performance of the material as a function of the propelling power of the compactor.
In yet another aspect of the present invention an apparatus for determining compaction performance of a material by a compactor having a known compaction width is disclosed. The apparatus includes means for determining a lift thickness of the material, means for determining a rolling resistance of the compactor, means for determining a level of compactive energy delivered to the material as a function of the compaction width, the lift thickness and the rolling resistance, and means for determining the compaction performance of the material as a function of the compactive energy.
In still another aspect of the present invention an apparatus for determining compaction performance of a material by a compactor is disclosed. The apparatus includes means for determining a ground speed of the compactor, means for determining a rolling resistance of the compactor, means for determining a propelling power of the compactor as a function of the ground speed and the rolling resistance, and means for determining the compaction performance of the material as a function of the propelling power of the compactor.
In yet another aspect of the present invention an apparatus for determining compaction performance of a material by a compactor having a known compaction width is disclosed. The apparatus includes a site coordinate determining system for determining a lift thickness of the material, a first sensor and a second sensor located at the input and the output, respectively, of a torque converter located on the compactor, the first and second sensors being adapted for determining a rolling resistance of the compactor, and a processor located on the compactor for determining a level of compactive energy delivered by the compactor to the material as a function of the compaction width, the lift thickness, and the rolling resistance, the processor being further adapted to determine the compaction performance of the material as a function of the compactive energy.
In still another aspect of the present invention an apparatus for determining compaction performance of a material by a compactor is disclosed. Th apparatus includes a ground speed sensor located on the compactor, a first sensor and a second sensor located at the input and the output, respectively, of a torque converter located on the compactor, the first and second sensors being adapted for determining a rolling resistance of the compactor, and a processor located on the compactor for determining a propelling power of the compactor as a function of the ground speed and the rolling resistance, the processor being further adapted to determine the compaction performance of the material as a function of the propelling power of the compactor.


REFERENCES:
patent: 4149253 (1979-04-01), Paar et al.
patent: 4467652 (1984-08-01), Thurner AB et al.
patent: 4870601 (1989-09-01), Sandstrom
patent: 5426972 (1995-06-01), Heirtzler et al.
patent: 5471391 (1995-11-01), Gudat et al.
patent: 5493494 (1996-02-01), Henderson
patent: 5695298 (1997-12-01), Sandstrom
patent: 5719338 (1998-02-01), Magalski et al.
patent: 5787378 (1998-07-01), Schricker
patent: 9-79924 (1997-03-01), None
patent: WO8201905 (1982-06-01), None
patent: WO8603237 (1986-06-01), None
patent: WO9420684 (1994-09-01), None
patent: WO9725680 (1994-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for determining the performance of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for determining the performance of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for determining the performance of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2608411

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.