Method and apparatus for determining control actions based...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S090000, C700S109000, C700S177000, C700S121000, C438S005000, C029S563000

Reexamination Certificate

active

06721616

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the field of semiconductor device manufacturing and, more particularly, to a method and apparatus for determining control actions based on tool health and metrology data.
2. Description of the Related Art
There is a constant drive within the semiconductor industry to increase the quality, reliability and throughput of integrated circuit devices, e.g., microprocessors, memory devices, and the like. This drive is fueled by consumer demands for higher quality computers and electronic devices that operate more reliably. These demands have resulted in a continual improvement in the manufacture of semiconductor devices, e.g., transistors, as well as in the manufacture of integrated circuit devices incorporating such transistors. Additionally, reducing the defects in the manufacture of the components of a typical transistor also lowers the overall cost per transistor as well as the cost of integrated circuit devices incorporating such transistors.
Generally, a set of processing steps is performed on a group of wafers, sometimes referred to as a “lot,” using a variety of processing tools, including photolithography steppers, etch tools, deposition tools, polishing tools, rapid thermal processing tools, implantation tools, etc. The technologies underlying semiconductor processing tools have attracted increased attention over the last several years, resulting in substantial refinements. However, despite the advances made in this area, many of the processing tools that are currently commercially available suffer certain deficiencies. In particular, such tools often lack advanced process data monitoring capabilities, such as the ability to provide historical parametric data in a user-friendly format, as well as event logging, real-time graphical display of both current processing parameters and the processing parameters of the entire run, and remote, i.e., local site and worldwide, monitoring. These deficiencies can engender non-optimal control of critical processing parameters, such as throughput, accuracy, stability and repeatability, processing temperatures, mechanical tool parameters, and the like. This variability manifests itself as within-run disparities, run-to-run disparities and tool-to-tool disparities that can propagate into deviations in product quality and performance, whereas an ideal monitoring and diagnostics system for such tools would provide a means of monitoring this variability, as well as providing means for optimizing control of critical parameters.
One technique for improving the operation of a semiconductor processing line includes using a factory wide control system to automatically control the operation of the various processing tools. The manufacturing tools communicate with a manufacturing framework or a network of processing modules. Each manufacturing tool is generally connected to an equipment interface. The equipment interface is connected to a machine interface which facilitates communications between the manufacturing tool and the manufacturing framework. The machine interface can generally be part of an advanced process control (APC) system. The APC system initiates a control script based upon a manufacturing model, which can be a software program that automatically retrieves the data needed to execute a manufacturing process. Often, semiconductor devices are staged through multiple manufacturing tools for multiple processes, generating data relating to the quality of the processed semiconductor devices.
During the fabrication process various events may take place that affect the performance of the devices being fabricated. That is, variations in the fabrication process steps result in device performance variations. Factors, such as feature critical dimensions, doping levels, contact resistance, particle contamination, etc., all may potentially affect the end performance of the device. Various tools in the processing line are controlled in accordance with performance models to reduce processing variation. Commonly controlled tools include photolithography steppers, polishing tools, etching tools, and deposition tools. Pre-processing and/or post-processing metrology data is supplied to process controllers for the tools. Operating recipe parameters, such as processing time, are calculated by the process controllers based on the performance model and the metrology information to attempt to achieve post-processing results as close to a target value as possible. Reducing variation in this manner leads to increased throughput, reduced cost, higher device performance, etc., all of which equate to increased profitability.
Metrology data collected after the processing of a wafer or lot of wafers may be used to generate feedback and/or feedforward information for use in determining a control action for the previous process tool (i.e., feedback), the subsequent process tool (i.e., feedforward), or both. Typically, the output characteristics of only a sample of the wafers in a lot are measured. The sampled output characteristic data is assumed to be representative of the wafers in the lot and is used to generate the control action(s). The validity of this sampling assumption depends in part on the stability of the process used to process the lot of wafers. If not all of the wafers in the lot are processed using the same stable process, some of the wafers may have output characteristics that differ from the wafers used to generate the sampled metrology data, thus degrading the integrity of the sampling assumption. Control actions may be implemented based on metrology data that does not apply to all wafers in the lot. For example, if the metrology data is used to adjust a polishing time, and the layer being processed on one wafer has different characteristics than the process layer on the wafer that was measured, the non-measured process layer may be polished incorrectly resulting in the degradation of the process layer or damage to underlying features formed on the wafer.
The present invention is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
SUMMARY OF THE INVENTION
One aspect of the present invention is seen in a method for controlling a process. The method includes processing a first workpiece in a first process tool. An output characteristic of the first workpiece is measured. A second workpiece is processed in the first process tool. A tool health metric is determined for the first process tool corresponding to the processing of the second workpiece. A control action is determined based on the measured output characteristic and the tool health metric. The control action may be a feed back control action or a feedforward control action.


REFERENCES:
patent: 3819916 (1974-06-01), Watanabe
patent: 4894644 (1990-01-01), Thomas
patent: 5665199 (1997-09-01), Sahota et al.
patent: 6173757 (2001-01-01), Pohlandt
patent: 6230069 (2001-05-01), Campbell et al.
patent: 6368879 (2002-04-01), Toprac
patent: 6379980 (2002-04-01), Toprac
patent: 6484064 (2002-11-01), Campbell
patent: 6500681 (2002-12-01), Christian et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for determining control actions based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for determining control actions based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for determining control actions based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195715

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.