Method and apparatus for determining battery properties from...

Electricity: measuring and testing – Electrolyte properties – Using a battery testing device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06222369

ABSTRACT:

BACKGROUND OF THE INVENTION
Small-signal ac measurement techniques have proven useful in determining properties of electrochemical cells and batteries such as cranking power, percent capacity, and state-of-health. These techniques have generally utilized single-frequency measurements of a single quantity, such as conductance (e.g., U.S. Pat. Nos. 5,585,728 and 5,140,269 to Champlin), resistance (e.g., U.S. Pat. No. 3,676,770 to Sharaf et al, U.S. Pat. No. 3,753,094 to Furuishi, U.S. Pat. No. 5,047,722 to Wurst et al), or “impedance” (e.g., U.S. Pat. No. 4,697,134 to Burkum et al, U.S. Pat. No. 5,773,978 to Becker). However, considerably more information of an electrical chemical, and physical nature is contained in the continuous spectrum of complex immittance, i.e., either impedance or admittance, displayed over a range of frequencies. (See, e.g., David Robinson, “Electrochemical Impedance Spectroscopy in Battery Development and Testing”, BATTERIES INTERNATIONAL, 31, pp. 59-63, April, 1997). A big challenge for field testing batteries is to acquire such information from a relatively small number of measurements obtained at a few selected “spot” frequencies.
Muramatsu discloses one approach to this challenge in U.S. Pat. No. 4,678,998. He measures impedance magnitude at two frequencies. At each frequency he compares the measured magnitude with that of a predetermined experimental relationship between impedance magnitude, remaining capacity, and remaining service life. He reports that such measurements can separately determine the battery's remaining capacity and its remaining service life. Randin discloses a second approach in U.S. Pat. No. 4,743,855. He reportedly determines a battery's state-of-discharge from the argument (i-e., phase angle) of the difference between complex impedances measured at two frequencies. Bounaga discloses still another approach in U.S. Pat. No. 5,650,937. He reportedly determines state-of-charge from measurements of only the imaginary part of complex impedance obtained at a single frequency. All three of these approaches have fairly limited objectives, however. Much more information is actually contained in the complete spectrum of complex immittance than is acquired by Muramatsu, Randin, or Bounaga.
Equivalent circuit modeling may assist one in relating complex immittance spectra to electrical, chemical, or physical properties of a battery. A complex nonlinear least-squares curve-fitting procedure has been used by electrochemists to relate impedance spectra to nonlinear electrochemical models. (See, e.g., J. Ross Macdonald and Donald R. Franceschetti, “Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”,
Journal of Electroanalytical Chemistry,
307, pp. 1-11, 1991; see also Bernard A. Boukamp, “A Package for Impedance/Admittance Data Analysis”,
Solid State Ionics,
18, pp.136-140, 1986). This complex procedure, however, requires measuring the complete spectral distribution of cell/battery impedance and then making initial estimates of the model's parameters to ensure ultimate convergence.
An equivalent circuit model is an interconnection of electrical elements introduced to represent terminal characteristics of the battery. In a linear small-signal model, these elements comprise discrete resistances capacitances and inductances. Such models have been described by a number of workers including Hampson, et al (N. A. Hampson, et al, “The Impedance of Electrical Storage Cells”,
Journal of Applied Electrochemistry,
10, pp.3-11, 1980), Willihnganz and Rohner (E. Willihnganz and Peter Rohner, “Battery Impedance”,
Electrical Engineering,
78, No. 9, pp. 922-925, September, 1959), and DeBardelaben (S. DeBardelaben, “Determining the End of Battery Life”, INTELLEC 86,
IEEE Publication CH
2328-3/86/0000-0365, pp. 365-386, 1986; and S. DeBardelaben, “A Look at the Impedance of a Cell”, INTELLEC 88,
IEEE Publication CH
2653-4/88/000-0394, pp. 394-397, 1988). However, none of these workers has disclosed means for determining component values of an equivalent circuit model from a small number of measurements obtained at a few selected “spot” frequencies. That is an important contribution of the invention disclosed herein
SUMMARY OF THE INVENTION
A device includes a microprocessor or microcontroller and measures real and imaginary parts of complex immittance of a cell or battery at n discrete frequencies, where n is an integer number equal to or greater than 2. The device determines cell/battery properties by evaluating components of an equivalent circuit model comprising 2n frequency-independent linear electrical elements. Equating measured real and imaginary parts of complex immittance to theoretical real and imaginary values appropriate to the model at each of the n discrete frequencies defines a set of 2n nonlinear equations in 2n unknowns. By introducing 2n intermediate variables, this formidable problem is made linear and is systematically solved for the values of the components of the model. Once these values are known, a table of the 2n element values contains virtually the same information as the continuous spectrum of complex immittance displayed over a range of frequencies. However, the table of values provides this information in a much more concise form that is easier to store, analyze, and manipulate. Thus, circuit element values may themselves comprise the desired result. Moreover, the circuit elements represent actual processes occurring within the battery. Accordingly, a predetermined relationship between one or more of the elements and an additional electrical, chemical, or physical property of the cell/battery may be invoked to determine the additional property.
The method and apparatus disclosed herein are efficient, accurate, and easily implemented with a microcontroller or microprocessor. The invention is suitable for a variety of diagnostic applications ranging from hand-held battery testers to “smart” battery chargers and battery “fuel gauges” in electric vehicles. Although a lead-acid automotive storage battery is used as an example to teach the method, the invention is equally applicable to both primary and secondary cells and batteries, and to those employed in a variety of other applications and/or employing other chemical systems.


REFERENCES:
patent: 2514745 (1950-07-01), Dalzell
patent: 3356936 (1967-12-01), Smith
patent: 3593099 (1971-07-01), Scholl
patent: 3607673 (1971-09-01), Seyl
patent: 3676770 (1972-07-01), Sharaf et al.
patent: 3729989 (1973-05-01), Little
patent: 3753094 (1973-08-01), Furuishi et al.
patent: 3808522 (1974-04-01), Sharaf
patent: 3811089 (1974-05-01), Strezelewicz
patent: 3873911 (1975-03-01), Champlin
patent: 3886443 (1975-05-01), Miyakawa et al.
patent: 3889248 (1975-06-01), Ritter
patent: 3906329 (1975-09-01), Bader
patent: 3909708 (1975-09-01), Champlin
patent: 3936744 (1976-02-01), Perlmutter
patent: 3946299 (1976-03-01), Christianson et al.
patent: 3947757 (1976-03-01), Grube et al.
patent: 3969667 (1976-07-01), McWilliams
patent: 3979664 (1976-09-01), Harris
patent: 3984762 (1976-10-01), Dowgiallo, Jr.
patent: 3984768 (1976-10-01), Staples
patent: 4008619 (1977-02-01), Alcaide et al.
patent: 4053824 (1977-10-01), Dupuis et al.
patent: 4070624 (1978-01-01), Taylor
patent: 4086531 (1978-04-01), Bernier
patent: 4112351 (1978-09-01), Back et al.
patent: 4114083 (1978-09-01), Benham et al.
patent: 4126874 (1978-11-01), Suzuki et al.
patent: 4178546 (1979-12-01), Hulls et al.
patent: 4193025 (1980-03-01), Frailing et al.
patent: 4207611 (1980-06-01), Gordon
patent: 4315204 (1982-02-01), Sievers et al.
patent: 4316185 (1982-02-01), Watrous et al.
patent: 4322685 (1982-03-01), Frailing et al.
patent: 4363407 (1982-12-01), Barkler et al.
patent: 4369407 (1983-01-01), Korbell
patent: 4390828 (1983-06-01), Converse et al.
patent: 4392101 (1983-07-01), Saar et al.
patent: 4396880 (1983-08-01), Windebank
patent: 4408157 (1983-10-01), Beaubien
patent: 4412169 (1983-10-01), Dell'Orto
patent: 4423378 (1983-12-01), Marino et al.
patent: 4423379 (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for determining battery properties from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for determining battery properties from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for determining battery properties from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2436660

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.