Method and apparatus for determining a cell density of a...

Image analysis – Applications – Manufacturing or product inspection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S397000, C250S559240

Reexamination Certificate

active

06510239

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a method and an apparatus for determining an area-related cell density of a cell structure of a honeycomb body having a plurality of passages which are open-ended at an end of the honeycomb body. Such honeycomb bodies are used in particular as carrier bodies for exhaust gas catalysts which permit catalytic conversion of exhaust gases from an internal combustion engine. The area-related cell density is an essential parameter of such honeycomb bodies. The cell density is usually related to the cross-sectional area or a part thereof, that is to say it is transverse relative to a flow direction that is predetermined by the passages. The usual unit is cells per square inch, cpsi. The area-related cell density is established in the mass production of the honeycomb bodies. In the case of extruded honeycomb bodies, it is possible for the area-related cell density to be definitively established through the use of a negative mould with which the honeycomb bodies are produced in series manufacture. However, especially in the production of honeycomb bodies being formed of sheet metal layers, the area-related cell density changes during the manufacturing procedure, with its final value depending on the management of the manufacturing procedure. For that reason, continuous monitoring and possibly regulation of the manufacturing procedure by checking the area-related cell density is required, at least on a random sample basis. One way is to select individual finished honeycomb bodies and to determine the number of cells thereof by counting them out by hand. The area-related cell density is obtained by relating the number of cells to a previously known or measured reference area, for example a cross-sectional area of a tubular casing of a honeycomb body. The operation of counting the number of cells by hand is time-consuming and susceptible to error. The person who is carrying out the checking operation can easily miscount and the reference area is under some circumstances not precisely known or is incorrectly measured. With a cell density of 600 cpsi, for example, it is only possible for a substantially smaller cross-sectional area than 1 square inch to be counted out, at reasonable cost.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method and an apparatus for determining an area-related cell density of a honeycomb body, in particular for an exhaust gas catalytic converter, which overcome the hereinafore-mentioned disadvantages of the heretofore-known methods and apparatuses of this general type and which permit automatable, rapid, inexpensive and precise determination.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method of automatically determining an area-related cell density of a cell structure of a honeycomb body including a multiplicity of passages having open ends at an end of the honeycomb body at which the cell structure is visible, the method which comprises recording an image having a known or ascertainable image scale of at least a portion of the cell structure, with an optical instrument; and processing the image by establishing a number of cells by counting cells and calculating the cell density by relating the number of cells to a reference area established with the aid of the image scale.
The number of cells is counted and the cell density is calculated by relating the number of cells to a reference area, as in the case of the above-described manual method, but according to the invention it is done automatically. Use is made of the image scale, in the operation of establishing the reference area. The automatic determination procedure can be carried out quickly and reliably and saves on labor costs. It is also possible to increase the percentage of random samples or to check all honeycomb bodies produced in a manufacturing procedure, in regard to their area-related cell density, at a low level of additional expenditure. The method can be integrated directly into the manufacturing procedure or it can be performed in a separate method step. Due to its rapidity, it is possible in both cases to correct the manufacturing procedure without delay in order to abide by the predetermined parameters, in the event of an area-related cell density that deviates from predetermined parameters. It is therefore possible to avoid whole series of honeycomb bodies from failing to correspond to the predetermined parameters.
If it is not the entire cell structure of a honeycomb body but only a part of such a structure that is evaluated, it is possible for incomplete images of cells to be produced. Therefore, in accordance with another mode of the invention, only cells with respect to which complete images are produced are counted and cell cross-sectional areas of the individual cells are established through the use of the image scale. The sum of the individual cell cross-sectional areas is equal to the reference area. That procedure makes it possible to achieve a high degree of precision in determining the area-related cell density since estimating errors when estimating the size of a cell with respect to which an incomplete image has been produced are not involved.
In accordance with a further mode of the invention, the counted cells form a coherent region of the cell structure. An advantage of this is that the optical instrument and the honeycomb body can be put into a fixed position relative to each other which then no longer needs to be altered.
In accordance with an added mode of the invention, an area average of the cell cross-sectional areas is calculated, an area tolerance range is ascertained and, if the cell cross-sectional area of a cell falls below the area tolerance range, the cell is not included in the count when calculating the number of cells. In that way errors can be corrected, in terms of recognition of cells. It can be assumed in many cases that the cell cross-sectional areas are almost all approximately equal. If the cell cross-sectional area of a cell falls below the area tolerance range, it is then assumed that a cell wall which was not present was wrongly involved when processing the image and/or when recording the image.
In accordance with an additional mode of the invention, an area average of the cell cross-sectional areas is calculated, an area tolerance range is ascertained and, if the cell cross-sectional area of a cell exceeds the area tolerance range, the cell is counted two or more times in the operation of counting the number of cells. The determination as to how many times it contributes to the number of cells depends on how many times larger the cell cross-sectional area of the cell is than the area average. In that way errors due to non-recognized cell walls can be corrected. Particularly in the case of honeycomb bodies with mutually adjoining smooth and corrugated sheet layers, there may be individual, incompletely bordered cells which can be treated as completely bordered cells, with this development of the method. That is desirable since a narrow communicating opening between two cells is of only slight practical significance. Checks concerning the method have shown that, with a suitable selection with respect to the area tolerance range, the area-related cell density can be determined with a relative error of 0.5%.
As mentioned above, the image has a known or ascertainable image scale. In accordance with yet another mode of the invention, it is desirable if a scale object which is of known dimensions is immovably mounted, preferably glued, to the end of the honeycomb body, and if the scale object is at least partially also recorded in the image, so that there exists a scale which is the image scale or with which the image scale is formed. When forming the image scale, it is possible to use additional items of information, for example a possibly known spacing from the optical instrument to the end of the honeycomb body. A scale object which is at least partially also recorded with the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for determining a cell density of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for determining a cell density of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for determining a cell density of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3054625

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.