Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
1998-02-17
2001-08-14
Chin, Christopher L. (Department: 1641)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C422S051000, C422S051000, C422S051000, C435S287100, C435S287200, C435S805000, C435S970000, C436S164000, C436S169000, C436S514000, C436S518000, C436S805000, C436S810000
Reexamination Certificate
active
06274326
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The invention relates generally to blood chemistry monitoring utilizing enzyme-based blood analysis systems, such as blood glucose or cholesterol systems, and more specifically to a method and apparatus for detecting proper strip insertion into an optical reflectance meter.
BACKGROUND OF THE INVENTION
Portable blood glucose monitoring meters were first made available for use in the late 1970's. Portable meters provided patients and health care providers with the means to improve insulin control by permitting them to determine blood glucose levels quickly and with reasonable accuracy, without the need for vein puncture and laboratory analysis. Since the introduction of such meters, improvements to date have produced portable meters offering greater convenience in smaller sizes with more features.
Portable blood glucose monitoring meters today typically utilize disposable test strips, similar to litmus paper, that have applied chemistries that produce a color change when a drop of a patient's capillary blood is applied to the chemistries. In the case of such test strips with chemistries that produce a color change, the strip becomes darker in proportion to the amount of blood glucose present in the blood. In such cases, the strip bearing the patient's blood is inserted into the meter and the color change in the chemistry on the strip is measured using an optical reflectance system within the meter. A microprocessor-based program within the meter then processes the color change measurement and generates a digital read-out of the corresponding concentration, typically in milligrams per decaliter, of blood glucose in the patient's capillary blood. Such meters are commonly known as optical reflectance meters, and they are the most common type of portable blood glucose monitoring meter in use today.
Optical reflectance meters provide accurate results only if the test strip is inserted into the machine properly. Such optical reflectance meters also may not produce valid results if the test strip used was not designed for the meter. Previously, detection of proper test strip insertion in optical reflectance meters has been by means of a second optical channel. This greatly increases the cost of such meters and is therefore undesirable. Additionally, the second optical channel is easily corrupted by the fluid being analyzed (typically blood for consumer devices). Furthermore, an upside down strip is difficult to detect with such methods and often the primary optical channel (which is also easily corrupted by blood) has to be invoked in order to detect this condition. However, even the second optical channel method is unable to distinguish between a characterized test strip and an unknown test strip (wrong analyte, second party strip, etc). This may result in an incorrect reading being given to the user.
There is therefore a need in the blood chemistry monitoring art for a portable blood analysis system which will detect proper test strip insertion and proper test strip design prior to giving a reading to the user. The present invention is directed toward meeting this need.
SUMMARY OF THE INVENTION
The present invention relates to a method and apparatus for detecting proper strip insertion into an optical reflectance meter. An electrical or electromagnetic device within the optical reflectance meter periodically launches a signal in order to detect when a test strip is inserted therein. The test strip which is designed for use in such a meter contains a material which enhances the coupling of the signal to a receiver within the meter. The meter then receives the signal and will not produce a reading until a signal of a proper level is received. Use of the meter and special test strip of the present invention comprises a more cost effective system for detection of proper test strip insertion which is not dependent upon clean optics as in prior art devices. The present invention therefore ensures reliable protection of strip insertion with the ability to distinguish not only whether the test strip has been inserted incorrectly by the user, but also whether the test strip was designed for use with the meter into which it has been inserted.
In one form of the invention, a meter for analyzing a quantity of bodily fluid placed upon a test strip which is inserted into the meter is disclosed, comprising analysis apparatus operative to analyze the bodily fluid and generate a meter output; an electromagnetic core; a first coil wound about the core; a second coil wound about the core; means for impressing a first voltage on the first coil; and means for monitoring a second voltage induced on the second coil, wherein the means for monitoring is operative to activate the analysis apparatus only when the second voltage exceeds a predetermined threshold.
In another form of the invention a meter for analyzing a quantity of bodily fluid placed upon a test strip which is inserted into the meter is disclosed, comprising analysis apparatus operative to analyze the bodily fluid and generate a meter output; a first electrode; a second electrode; means for impressing a first voltage on the first electrode; and means for monitoring a second voltage on the second electrode, wherein the means for monitoring is operative to activate the analysis apparatus only when the second voltage exceeds a predetermined threshold.
In another form of the invention a test strip for use with a meter for analyzing a quantity of bodily fluid placed upon the test strip is disclosed, comprising a test strip foundation; a chemistry area formed on the foundation by applying at least one chemical thereto which will react with the bodily fluid; and a piece of electromagnetic core material attached to the foundation.
In another form of the invention a test strip for use with a meter for analyzing a quantity of bodily fluid placed upon the test strip is disclosed, comprising a test strip foundation; a chemistry area formed on the foundation by applying at least one chemical thereto which will react with the bodily fluid; and a conductive area formed on the foundation.
In another form of the invention a method for determining proper test strip insertion into a meter which analyzes a quantity of bodily fluid placed upon the test strip is disclosed, comprising the steps of: (a) impressing a first signal upon a first conductive member; (b) inducing a second signal upon a second conductive member; (c) monitoring the induced second signal; and (d) activating the meter when the induced second signal exceeds a predetermined threshold.
In another form of the invention a method for determining proper test strip insertion into a meter which analyzes a quantity of bodily fluid placed upon the test strip is disclosed, comprising the steps of: (a) inserting the test strip into meter; (b) determining if the test strip is valid for use with the meter; (c) determining if the test strip has been inserted into the meter with the proper orientation; and (d) activating the meter only if the test strip is valid and has been inserted with the proper orientation.
REFERENCES:
patent: 4684445 (1987-08-01), Seshimoto et al.
patent: 4833088 (1989-05-01), DeSimone et al.
patent: 4871441 (1989-10-01), Tsunekawa et al.
patent: 5189495 (1993-02-01), Brunsting et al.
patent: 5231576 (1993-07-01), Suzuki et al.
patent: 5277870 (1994-01-01), Fuller et al.
patent: 5526120 (1996-06-01), Jina et al.
Chin Christopher L.
UMM Electronics Inc.
Woodard, Emhardts, Naughton, Moriarty & McNett
LandOfFree
Method and apparatus for detecting proper strip insertion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for detecting proper strip insertion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for detecting proper strip insertion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2448496