Data processing: structural design – modeling – simulation – and em – Structural design
Reexamination Certificate
2000-07-24
2003-12-09
Teska, Kevin J. (Department: 2123)
Data processing: structural design, modeling, simulation, and em
Structural design
C703S006000
Reexamination Certificate
active
06662144
ABSTRACT:
RELATED APPLICATION
This application is a continuation-in-part of application Ser. No. 07/551,919 filed on Jul. 12, 1990, now abandoned.
TECHNICAL FIELD
This invention relates to a method and apparatus for designing and editing a distribution system for a building and, in particular, to an automated system for designing and editing the distribution system.
BACKGROUND OF THE INVENTION
Distribution systems are found in every building. Such distribution systems provide for the movement and channelling of gases, liquids and electricity through a building. In any building, there are one or more distribution systems including a sprinkler system, duct work for heating, ventilation and air conditioning, plumbing and electrical systems.
One major type of distribution system is a sprinkler system for fire containment which is found in many buildings today. In today's society, any building where people congregate to live, work or play such as office buildings, factories, hotels, motels, apartment buildings, condominiums or shopping malls likely will include a sprinkler system to protect the public from a fire catastrophe.
Governmental bodies have recognized the need to protect against catastrophic fires by legislating standards for sprinkler systems into their building codes. Also, insurance companies, fearful of the potential liability of a catastrophic fire, have often demanded sprinkler systems in buildings as a condition for insurance coverage.
A building will have to comply with one or more standards for any distribution system. First, any building will need to comply with the standards set forth in relevant governmental codes. Often, insurance companies will require compliance with standards which may be tougher than the relevant governmental code. These standards can be set by the industry itself such as the National Fire Protection Association (NFPA) guidelines or the standards may be set by an insurance company directly.
A design for a sprinkler system must take into account many factors. The primary concern is ensuring adequate containment in the event of a fire. Thus, the spacing as well as the available water volume and water pressure at the sprinkler heads must be considered. Consideration must be given to the occupancy use to be made of a building. A chemical factory utilizing flammable solvents will require a different sprinkler system than a shopping mall.
In addition, there are many engineering or architectural constraints placed on sprinkler system design. For example, if interconnected sprinkler lines do not lie in a horizontal plane, drains must be inserted to allow water flow to prevent freezing. This is particularly true in the case of a dry sprinkler system which must not contain water except during actual use.
The sprinkler system must be designed with other building elements and adjuncts in mind. Locations must be found to hang the sprinkler system. Manually determining paths which avoid these obstructions, where to support the sprinkler system, how to allow each line to lie in a plane yet providing an adequate water supply which meets all requirements is difficult, tedious and very time consuming.
The concerns expressed above for a sprinkler system also relate to heating, ventilation and air conditioning (hereafter “HVAC”), plumbing and electrical systems. Standards also must be complied with when designing these systems for a building. The proper amount of light, ventilation and heat must be provided for each area.
The problem is compounded when, as usual, the various distribution system subcontractors must work out between themselves where to position the electrical conduits, the HVAC duct work, the plumbing piping and the sprinkler system. Generally, an architect or a general contractor designs the building elements such as beams, walls and joists. Left for the subcontractors is usually a space near the top of the steel. Into this space must go the various building adjuncts such as electrical conduit, overhead lighting fixtures, HVAC duct work and sprinklers. It is left to the subcontractors among themselves to specifically locate each such adjunct system.
Still another concern is keeping the cost of the system reasonable without sacrificing system performance. Designing a system which utilizes material in the most cost efficient manner is very difficult. For example, piping comes in standard lengths which are then cut to size as needed. Two sometimes conflicting concerns are (1) minimizing labor costs by minimizing the number of cuts and (2) reducing the left-over scrap material. Balancing these concerns is not a trivial exercise for an engineer.
In addition, the engineer must design a system which provides adequate HVAC to all parts, of a building given the varying conditions different portions of a building may encounter. For example, the HVAC requirements for the sunless north side of a building will differ from the full sun south side or the half day sun of the east and west sides. As is apparent, designing a distribution system manually is an onerous task. There is a need for a system which automatically performs these tasks.
What is needed is a system which coordinates the layouts of all the various distribution systems needed for a building. Such a system should provide for efficient design of the system, not only for its operation, but also its installation and cost.
The system should also provide hard copy or design for use in constructing the designed system. This hard copy can be used by people installing the electrical or sprinkler system at the construction site. It would also be useful if the system would provide a complete listing of the elements needed to install the distribution system.
The present invention meets these desires.
SUMMARY OF THE INVENTION
The invention is a method and apparatus for designing and editing a distribution system for a building. The distribution system can be any system used in a building including plumbing, electrical, sprinkling, ventilating and related systems or any combination of such systems. Information about the distribution system elements and various standard requirements is stored into a memory of a computer. Information about the building elements and adjuncts including location of walls and similar obstructions are entered into a computer. These building elements and adjuncts are then stored in the memory of the computer. The user can edit the building elements and adjuncts as desired. The user also selects the particular standard which is applicable to the building being constructed. For example, this may be a particular standard for lighting systems or a particular fire code used to design a sprinkler system.
A computer program then divides the building into suitable floors and then each floor into sections. Sections most often are either bays which are defined by the location of the beams of the building or individual rooms defined by the walls. This division breaks the problem down into manageable proportions.
The computer program then computes the layout needed for the distribution system based upon the selected standard. For example, how much light or ventilation is needed in a particular room. The layout is routed as economically as possible while avoiding the building elements and adjuncts. In addition, the quantity and location of hangers needed to support the distribution system as well as other special fittings needed are calculated. These computations are repeated for each section.
After the computations are complete, the program stores the information in memory and then can print out hard copy of the layout of the system. Also, an elements listing showing the number of components can be printed. For example, this will list how many and what type of light fixtures and wire are needed or, in the case of a sprinkler system, how many and what types of sprinkler heads and pipes are needed. Lastly, the most economical plan for cutting elements (e.g. pipes) to size is devised and printed.
An editing capability is provided to allow the user to edit either the layout or the building elements
Cox Gene Michael
Hines, III Charles L.
Normann Linda M.
First Graphics, Inc.
Garcia-Otero Eduardo
Olson & Hierl Ltd.
Teska Kevin J.
LandOfFree
Method and apparatus for designing and editing a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for designing and editing a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for designing and editing a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3131688