Method and apparatus for designing a manufacturing process...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S145000

Reexamination Certificate

active

06353768

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates generally to sheet metal forming, and more particularly to a method and apparatus for designing the manufacturing process for making sheet metal parts.
2. Description of the Related Art
The task of designing the manufacturing process for making sheet metal parts can be very time consuming and expensive. The tooling design is typically decomposed into a number of operations and die shapes needed to produce the desired part. In parallel, the manufacturing process parameters, such as the initial shape of the blank, the blankholder force, and the shape of the drawbeads are also defined. Additionally, the design cycle must account for a number of potential defects, such as tearing of the sheet metal, excessive thinning or thickening of the part, insufficient flange remaining following the forming operation, and incorrect final part shape.
Fortunately, the time and expense incurred in designing the manufacturing process can be significantly reduced by accurately simulating the forming processes before committing to hard tooling. For example, a simulation program know as ABAQUS has been developed by Hibbit, Karlsson & Sorensen, Inc. of Pawtucket, R.I. to model deformation processes and predict some sheet metal forming defects such as tearing and springback. The outcome of a simulation performed using ABAQUS can be used to select the forming parameters and design the die shapes of a forming process.
However, ABAQUS has some significant drawbacks. For example, in the “Explicit” version which utilizes explicit integration, the forming tools for 3-dimensional analysis are defined by a finite element mesh. The construction of such a mesh for the forming tools is usually very time consuming in terms of both human and computer resources. In addition, the finite element mesh involves approximating the actual shape of the tools as a mesh of triangular facets or bilinear four-node elements, which compromises the accuracy of the results.
ABAQUS also has a “standard/implicit” version which utilizes implicit integration and which allows the user to input the shape of the forming tools as either a finite element mesh or an exact mathematical model. However, the exact mathematical model must be in a unique ABAQUS format, which is typically very time consuming to construct.
Anther shortcoming of ABAQUS relates to the effort required to model drawbeads. In the case that drawbeads are used, the only direct way of implementing them into the model is by a complete representation of their detailed geometry as part of a large three-dimensional tool, thereby increasing the amount of human and computer resources required to conduct the analysis.
It would be desirable, therefore, to have a method and apparatus for modeling a manufacturing process such as sheet metal forming which provided accurate results by allowing exact mathematical modeling of the forming tools, while reducing the human and computer resources needed to conduct the simulation.
SUMMARY
A method of designing a manufacturing process, according to an exemplary embodiment of the invention, comprises the steps of representing a workpiece as a plurality of finite elements, representing a forming tool with a mathematical equation, simulating a deformation of the workpiece by the forming tool with a finite element model, wherein the finite element model is integrated with explicit integration, and adjusting a characteristic of at least one of the workpiece and the forming tool to alter a final shape of the workpiece. The method may be carried out with an apparatus which includes a memory device which stores a program including computer readable instructions and a processor which executes the program instructions in accordance with the method.
After the deformation of the workpiece has been simulated by the finite element model, the characteristics of the workpiece and forming tool can be modified to improve the final shape of the workpiece. For example, the user can modify forming parameters such as the punch travel distance, the blankholder load, the speed of the forming process, and the coefficients of friction for the forming tool. The user can also modify the shape of the workpiece, the shape of the forming tool including drawbeads, and the material of the workpiece, to improve the final shape of the workpiece. After the finite element simulation produces an acceptable final workpiece shape, an actual workpiece can be formed with actual tools based on the simulation.
The invention also relates to an article of manufacture comprising a memory device such as a compact disc containing computer readable program instructions embodied therein for designing a manufacturing process.


REFERENCES:
patent: 5379227 (1995-01-01), Tang et al.
patent: 5390127 (1995-02-01), Tang et al.
patent: 5463558 (1995-10-01), Tang et al.
patent: 5552995 (1996-09-01), Sebastian
patent: 5561754 (1996-10-01), Oliver et al.
Kjell Mattiasson et al., Simulation of Springback in Sheet Metal Forming, Simulation of Materials Processing: Theory, Methods and Applications 115-124 (1995).
Frederic Aberlenc et al., OPTRIS: The Complete Simulation of the Sheet Metal Forming, Simulation of Materials Processing: Theory, Methods and Applications 651-656 (1995).
B.D. Carleer et al., Modeling Drawbeads in 3D Finite Element Simulations of the Deep Drawing Process, Simulation of Materials Processing: Theory, Methods and Applications 681-685 (1995).
Y. Hayashida et al., FEM Analysis of Punch Stretching and Cup Drawing Tests for Aluminum Alloys Using a Planar Anisotropic Yield Function, Simulation of Materials Processing: Theory, Methods and Applications 717-722 (1995).
D. Joannic and J.C. Gelin, Accurate Simulation of Springback in 3D Sheet Metal Forming Processes, Simulation of Materials Processing: Theory, Methods and Applications 729-734 (1995).
M. El Mouatassim et al., An Industrial Finite Element Code for One-step Simulation of Sheet Metal Forming, Simulation of Materials Processing: Theory, Methods and Applications 761-766 (1995).
A.K. Ghosh and S.S. Hecker, Failure in Thin Sheets Stretched Over Rigid Punches, 6A Metallurgical Transactions 1065-1074 (1975).
A.P. Karafillis and M.C. Boyce, On the Modelling of Contact in Finite Element Analysis of Forming Processes, Numerical Methods in Industrial Forming Processes 267-273 (1992).
Harmon D. Nine, The Applicability of Coulomb's Friction Law to Drawbeads in Sheet Metal Forming, 2J. Appl. Metalw. 200-210 (1982).
M.C. Boyce and A.P. Karafillis, Tooling and Binder Design for 3D Sheet Metal Forming Processes Using Springback Calculations, Simulations of Materials Processing: Theory, Methods and Applications 581-586 (1995).
Amit K. Ghosh, A Method for Determining the Coefficient of Friction in Punch Stretching of Sheet Metals, 19 Int. J. Mech. Sci. 457-470 (1977).
A.K. Ghosh and S.S. Hecker, Stretching Limits in Sheet Metals: In-Plane versus Out-of-Plane Deformation, 5 Metallurgical Transactions 2161-2164 (1974).
S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sherets Stretched Over Rigid Punches, 56 Transactions of the ASM 25-48 (1963).
R. Hill, The Mathematical Theory of Plasticity, iv, vii-ix, 282-340 (1950).
ABAQUS/Standard Version 5.7 User's Manual vol. III, Hibbit, Karlsson & Sorensen, Inc. 25.1.1-1 through 25.1.1-5; 25.2.15-1 through 25.2.15-10 (1997).
ABAQUS/Explicit Version 5.6 User's Manual vol. 1, Hibbit, Karlsson & Sorensen, Inc. 1.1.2-1 through 1.3.1-4; 6.2.1-1 through 6.2.1-1 through 6.2.1-14 (1996).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for designing a manufacturing process... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for designing a manufacturing process..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for designing a manufacturing process... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2873462

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.