Pulse or digital communications – Receivers
Reexamination Certificate
1998-04-10
2001-05-08
Chin, Stephen (Department: 2634)
Pulse or digital communications
Receivers
C375S340000
Reexamination Certificate
active
06229856
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of signal processing, and, more particularly, relates to the field of processing of signals generated in a physiological monitoring system, such as, for example, in a system for measuring blood oxygen saturation using pulse oximetry.
2. Description of the Related Art
The present invention will be described herein in connection with a pulse oximetry apparatus and a method, which are used to measure blood oxygen saturation in a subject, such as, for example, a human patient. The teachings of the present invention can be used in other applications wherein useable signal information is obtained in a noisy environment.
In an exemplary pulse oximetry apparatus and a corresponding method, blood oxygen saturation is determined by transmitting pulses of electromagnetic energy through a portion of a subject which has blood flowing therein (e.g., through a finger, through an ear lobe, or other portion of the body where blood flows close to the skin). In the examples described herein, the pulses of electromagnetic energy comprise periodic pulses of red light having wavelengths of approximately 660 nanometers, for example, and periodic pulses of infrared light having wavelengths of approximately 905 nanometers. As described, for example, in U.S. Pat. No. 5,482,036 and in U.S. Pat. No. 5,490,505, the pulses of red light and the pulses of infrared light are applied with the same periodicity but in an alternating and non-overlapping manner. In particular, in preferred embodiments, the red pulses are active for approximately 25% of each cycle and the infrared pulses are also active for approximately 25% of each cycle. The red pulses are separated in time from the infrared pulses such that both pulses are inactive for approximately 25% of each cycle between a red pulse and the next infrared pulse and both pulses are inactive for approximately 25% of each cycle between an infrared pulse and the next red pulse. (Although described herein below in connection with pulses having 25% duty cycles, it should be understood by persons of skill in the art that the duty cycles of the pulses can be changed in some applications.) After propagating through the portion of the subject, the red pulses and the infrared pulses are detected by a detector which is responsive to light at both wavelengths and which generates an electrical signal which has a predictable relationship to the intensity of the electromagnetic energy incident on the detector. The electrical signal is processed in accordance with the present invention to provide a representation of the blood oxygen saturation of the subject.
In conventional time division multiplexing (TDM) demodulation that uses rectangular waves to drive the red and infrared LEDs, the conventional process of demodulation using square waves can result in the aliasing of the ambient noise components that come close to the sidebands of harmonics and the fundamental frequency of the rectangular waves, and the noise components are thus collapsed into the output signal generated by the demodulation. In particular, it is very difficult to avoid including harmonics of the line frequency in the demodulated output signal.
SUMMARY OF THE INVENTION
The present invention avoids the problems associated with conventional demodulation and separation of TDM signals. In particular, the present invention avoids the problem of aliasing of the ambient noise into the passband of the system by selectively demodulating certain harmonics of the TDM signal. For example, in one embodiment, only two harmonics (e.g., the fundamental and the first harmonic) are demodulated. In other embodiments, more harmonics are demodulated. The present invention specifically addresses solutions to problems caused by crosstalk resulting from filtering and also resulting from demodulating with only certain harmonics instead of demodulating with all harmonics as is done using conventional square wave demodulation. In a digital implementation of the present invention, the output of the photodetector is initially sampled at a very high frequency (e.g., 46,875 Hz), and the signals are decimated (where decimation is lowpass filtering followed by sample rate compression) such that the final output signals are generated at a relatively low sampling rate (e.g., 62.5 Hz) which provides increased resolution at the output. Thus, bandwidth is traded for resolution in the output signal, thus increasing the signal to noise ratio.
One aspect of the present invention is an apparatus for measuring blood oxygenation in a subject. The apparatus comprises a first signal source which applies a first input signal during a first time interval. A second signal source applies a second input signal during a second time interval. A detector detects a first parametric signal responsive to the first input signal passing through a portion of the subject having blood therein. The detector also detects a second parametric signal responsive to the second input signal passing through the portion of the subject. The detector generates a detector output signal responsive to the first and second parametric signals. A signal processor receives the detector output signal. The signal processor demodulates the detector output signal by applying a first demodulation signal to a signal responsive to the detector output signal to generate a first output signal responsive to the first parametric signal and by applying a second demodulation signal to the signal responsive to the detector output signal to generate a second output signal responsive to the second parametric signal. Each of the first demodulation signal and the second demodulation signal comprises at least a first component having a first frequency and a first amplitude and a second component having a second frequency and a second amplitude. The second frequency is a harmonic of the first frequency. The second amplitude is selected to be related to the first amplitude to minimize crosstalk from the first parametric signal to the second output signal and to minimize crosstalk from the second parametric signal to the first output signal. In one embodiment, the second amplitude is determined by turning off one of the first and second signal sources and measuring the crosstalk between one of the parametric signals and the non-corresponding output signal while varying the second amplitude. A second amplitude is selected that minimizes the measured crosstalk.
Another aspect of the present invention is a method of minimizing crosstalk between two signals generated by applying a first pulse and a second pulse to measure a parameter. The first pulse and the second pulse are applied periodically at a first repetition rate defining a period. The first pulse is generated during a first interval in each period, and the second pulse is generated during a second interval in each period. The second interval is spaced apart from the first interval. The first and second pulses produce first and second parametric signals responsive to the parameter. The first and second parametric signals are received by a single detector that outputs a composite signal responsive to the first and second parametric signals. The method comprises the step of applying a first demodulation signal to the composite signal to generate a first demodulated output signal wherein the first demodulation signal comprises at least a first component having a first frequency corresponding to the first repetition rate. The first component has a first amplitude. The first demodulation signal further comprises a second component having a second frequency that is a harmonic of the first frequency. The second component has a second amplitude which has a selected proportional relationship to the first amplitude. The method further includes the step of applying a second demodulation signal to the composite signal to generate a second demodulated output signal. The second demodulation signal comprises the first component at the first frequency and the first amplit
Al-Ali Ammar
Diab Mohamed K.
Weber Walter M.
Chin Stephen
Far Chih M.
Knobbe Martens Olson & Bear LLP
Masimo Corporation
LandOfFree
Method and apparatus for demodulating signals in a pulse... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for demodulating signals in a pulse..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for demodulating signals in a pulse... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2561633