Method and apparatus for delivering precursors to a...

Gas and liquid contact apparatus – Contact devices – Liquid tank

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06698728

ABSTRACT:

DESCRIPTION
The present invention relates to an improved method of, and apparatus for the delivery of precursors in the vapour phase to a plurality of expitaxial reactor sites, particularly in relation to the delivery of organometallic compounds.
It is common practice in the semiconductor industry for electronic devices to be produced by means of a Chemical Vapour Deposition (CVD) process. Precursors (liquid or solid) are supplied in bubblers wherein, in use, a carrier gas is bubbled through and becomes saturated with the precursor via a dip pipe. The carrier gas/vapour mixture is then passed at a controlled rate into an epitaxial reactor. Such systems are used in the production of both silicon and compound semiconductors, with early versions being specific to individual reactors.
With growth in demand for semiconductors, initially in the silicon area, it was necessary to introduce bulk distribution systems wherein a central reservoir fed a number of bubblers, local to each reactor. These systems, typically used for the delivery of Tetraethoxysilane (TEOS), have been actively marketed by the suppliers of TEOS but have only been applied to the distribution of liquids.
However, a number of precursors for semiconductor production are transported from the bubbler to their reactor in the gaseous phase and up until now such transportation has been achieved on an individual basis. This has obvious drawbacks, such as the downtime required for the changeout of the bubblers at the individual reactors and the cost in relation to the increased quantity and complexity of the local pick up and control equipment required for each chemical at each reactor.
The production of the equipment for transportation of the precursor from the bubbler to the reaction site has to be specially designed to make it suitable for carrying the many potentially hazardous chemicals that are used in semiconductor production, such as Trimethylgallium, Trimethylindium, Trimethylaluminium, Dimethylzinc and Triethylgallium. One of the potential hazards of all these chemicals is their pyrophoricity (i.e. they ignite spontaneously on contact with air).
It is an object of the present invention to provide an improved method of, and apparatus for, delivery of precursors to a reactor site, particularly in relation to organometallic compounds, that aims to overcome the abovementioned drawbacks.
Accordingly, a first aspect of the present invention provides a method for delivering an organometallic compound to a plurality of reactor sites, the method comprising the steps of introducing a carrier gas into a container of the organometallic compound, picking up the compound in the gas to form a gaseous mixture, transporting the gaseous mixture to a reservoir and selectively distributing the gaseous mixture to one or more of a plurality of reactor sites, the method excluding the step of condensing the gaseous mixture.
A second aspect of the present invention provides an apparatus for delivering an organometallic compound to a plurality of reactor sites, the apparatus comprising an inlet for introducing a carrier gas into a container of the organometallic compound, a reservoir for storage of the gaseous mixture of the compound and the carrier gas and an outlet for selectively distributing the gaseous mixture to one or more of a plurality of reactor sites, the apparatus excluding a condensor for condensation of the gaseous mixture.
Preferably, the rate of flow of the carrier gas and the carrier gas/precursor mixture through the apparatus is controlled by means of a system of mass flow controllers. A first mass flow controller is preferably positioned to control the rate of flow of the carrier gas into the container.
Preferably, a second source of carrier gas is introduced into the gaseous mixture after pick up of the precursor or. The addition of a second source of carrier gas is preferably monitored by a second mass flow controller after pick up of precursor to maintain the vapour concentration below saturation to ensure that the precursor remains in the vapour phase. Additionally or alternatively, the system maybe heated. This assists in maintaining the vapour concentration below saturation to ensure that the precursor remains in the vapour phase. Preferably, the second mass flow controller is linked to the first mass flow controller such that the two flows of carrier gas are always in the same ratio to each other.
The gaseous mixture is preferably transported to a reservoir for storage thereof, the reservoir having means for selectively distributing the mixture to a plurality of reactor sites. The reservoir is preferably provided with a pressure controller that is connected to the first mass flow controller to determine the rate of flow of carrier gas into the container. The pressure in the storage reservoir is controlled such as to enable a uniform supply of the gaseous mixture to the different reactors. The storage of bulk material in the gaseous phase has not previously been utilized in relation to the delivery of precursors to a reactor site. Prior hereto, storage has always been in the liquid or solid phase.
The gaseous mixture is preferably drawn under vacuum or by means of a pressure differential from the reservoir to each of the reactor sites. Preferably, each reactor is provided with its own mass flow controller to determine the rate of entry of the gaseous mixture into the reactor.
It is preferable for constant pick up of the precursor in the carrier gas to be achieved by the method and apparatus of the present invention. More preferably still, constant pick up is achieved over a wide range of flow rates, such as 0 to 10 litres per minute.
The container of precursor is preferably in the form of a bubbler, the carrier gas being introduced into the bubbler by means of a dip pipe. Preferably, the bubbler is surrounded by a temperature controlled oil bath. It is preferable to provide a means of monitoring the level of precursor in the bubbler (this may be achieved, for example, by a level alarm, a weighscale or a gas concentration monitor/totaliser).
A third aspect of the present invention provides a bubbler comprising a container for precursor and a dip pipe for passage of a carrier gas therethrough to pick up the precursor in the gas, wherein the bubbler includes one or more of the following features:
(a) a narrowing of the container at or near the base thereof to aid complete utilisation of the precursor therein; and
(b) one or more hollow members extending substantially perpendicularly to the dip pipe and being in fluid communication therewith, each member having an opening therein to aid pick up of the precursor.
The base of the bubbler may be provided with a narrowing or may have a smaller vessel placed therein relative to the bubbler, for example being in the form of a well at the bottom of the bubbler. The end of the dip pipe is placed within the narrowing or smaller vessel to ensure that constant pick up of the precursor is achieved until almost complete utilisation of the precursor contained within the bubbler.
The dip pipe is preferably designed to provide an increased rate of pick up of the precursor. Preferably, the dip pipe is provided with one or more hollow members extending substantially perpendicularly from the main body of the dip pipe, preferably situated at the base thereof. The members are preferably provided with a plurality of holes in one or more sides thereof. More preferably, the dip pipe is provided with a hollow cross at the base thereof. Preferably, each leg of the cross has a plurality of holes. More preferably, the holes are provided in the same side of each leg. This design ensures a small bubble size together with a swirling motion to give highly efficient pick up.
The carrier gas that picks up the precursor may be any suitable permanent gas, such as hydrogen. The apparatus and method of the present invention are particularly suitable for delivering organometallic compounds to epitaxial reactors, such as Trimethylgallium, Trimethylindium, Trimethylaluminium, Dimethylzinc and Triethylgalliu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for delivering precursors to a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for delivering precursors to a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for delivering precursors to a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.