Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2000-10-04
2002-06-25
Getzow, Scott M. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06411846
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to an electrotherapy method and apparatus for delivering an electrical pulse to a patient's heart. In particular, this invention relates to a method and apparatus for tailoring a second phase of biphasic waveform delivered by an external defibrillator, to random patients, by performing intelligent calculations and analysis to the results of a first phase segment of a biphasic defibrillation waveform and other parameters pertaining thereto based on theory and practice as disclosed herein.
BACKGROUND OF THE INVENTION
Devices for defibrillating a heart have been known for sometime now. Implantable defibrillators are well accepted by the medical community as effective tools to combat fibrillation for an identified segment of the population. A substantial amount of research in fibrillation and the therapy of defibrillation has been done. Much of the most recent research has concentrated on understanding the effects that a defibrillation shock pulse has on fibrillation to terminate such a condition.
A monophasic waveform is defined to be a single phase, capacitive-discharge, time-truncated, waveform with exponential decay. A biphasic waveform is defined to comprise two monophasic waveforms, separated by time and of opposite polarity. The first phase is designated and the second phase is designated &phgr;
2
. The delivery of &phgr;
1
is completed before the delivery of &phgr;
2
is begun.
After extensive testing, it has been determined that biphasic waveforms are more efficacious than monophasic waveforms. There is a wide debate regarding the reasons for the increased efficacy of biphasic waveforms over that of monophasic waveforms. One hypothesis holds that &phgr;
1
defibrillates the heart and &phgr;
2
performs a stabilizing action that keeps the heart from refibrillating.
Biphasic defibrillation waveforms are now the standard of care in clinical use for defibrillation with implantable cardioverter-defibrillators (ICDs), due to the superior performance demonstrated over that of comparable monophasic waveforms. To better understand these significantly different outcomes, ICD research has developed cardiac cell response models to defibrillation. Waveformn design criteria have been derived from these first principles and have been applied to monophasic and biphasic waveforms to optimize their parameters. These principles-based design criteria have produced significant improvements over the current art of waveforms.
In a two-paper set, Blair developed a model for the optimal design of a monophasic waveform when used for electrical stimulation. (1) Blair, H. A., “On the Intensity-time relations for stimulation by electric currents.” I. J. Gen. Physiol. 1932; 15: 709-729. (2) Blair, H. A., “On the Intensity-time Relations for stimulation by electric currents.” II. J. Gen. Physiol. 1932; 15: 731-755. Blair proposed and demonstrated that the optimal duration of a monophasic waveform is equal to the point in time at which the cell response to the stimulus is maximal. Duplicating Blair's model, Walcott extended Blair's analysis to defibrillation, where they obtained supporting experimental results. Walcott, et al., “Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation.” J. Cardiovasc Electrophysiol. 1995; 6: 737-750.
Independently, Kroll developed a biphasic model for the optimal design of &phgr;
2
for a biphasic defibrillation waveform. Kroll, M. W., “A minimal model of the single capacitor biphasic defibrillation waveform.” PACE 1994; 17:1782-1792. Kroll proposed that the &phgr;
2
stabilizing action removed the charge deposited by &phgr;
1
from those cells not stimulated by &phgr;
1
. This has come to be known as “charge burping”. Kroll supported his hypothesis with retrospective analysis of studies by Dixon, et al., Tang, et al., and Freese, et al. regarding single capacitor, biphasic waveform studies. Dixon, et al., “Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms.” Circulation 1987; 76:1176-1184; Tang, et al. “Ventricular defibrillation using biphasic waveforms: The Importance of Phasic duration.” J. Am. Coll. Cardiol. 1989; 13:207-214; and Feeser, S. A., et al. “Strength-duration and probability of success curves for defibrillation with biphasic waveforms.” Circulation 1990; 82: 2128-2141. Again, the Walcott group retrospectively evaluated their extension of Blair's model to &phgr;
2
using the Tang and Feeser data sets. Their finding further supported Kroll's hypothesis regarding biphasic defibrillation waveforms. For further discussions on the development of these models, reference may be made to PCT publications WO 95/32020 and WO 95/09673 and to U.S. Pat. No. 5,431,686.
The charge burping hypothesis can be used to develop equations that describe the time course of a cell's membrane potential during a biphasic shock pulse. At the end of &phgr;
1
, those cells that were not stimulated by &phgr;
1
have a residual charge due to the action of &phgr;
1
on the cell. The charge burping model hypothesizes that an optimal pulse duration for &phgr;
2
is that duration that removes as much of the &phgr;
1
residual charge from the cell as possible. Ideally, these unstimulated cells are set back to “relative ground.” The charge burping model proposed by Kroll is based on the circuit model shown in
FIG. 2
b
which is adapted from the general model of a defibrillator illustrated in
FIG. 2
a.
The charge burping model also accounts for removing the residual cell membrane potential at the end of a &phgr;
1
pulse that is independent of a &phgr;
2
. That is, &phgr;
2
is delivered by a set of capacitors separate from the set of capacitors used to deliver &phgr;
1
. This charge burping model is constructed by adding a second set of capacitors, as illustrated in FIG.
3
. In this figure, C
l
represents the &phgr;
1
capacitor set, C
2
represents the &phgr;
2
capacitor set R
H
represents the resistance of the heart, and the pair C
M
and R
M
represent membrane series capacitance and resistance of a single cell. The node V
S
represents the voltage between the electrodes, while V
M
denotes the voltage across the cell membrane.
External defibrillators send electrical pulses to the patient's heart through electrodes applied to the patient's torso. External defibrillators are useful in any situation where there may be an unanticipated need to provide electrotherapy to a patient on short notice. The advantage of external defibrillators is that they may be used on a patient as needed, then subsequently moved to be used with another patient.
However, this important advantage has two fundamental limitations. First, external defibrillators do not have direct contact with the patient's heart. External defibrillators have traditionally delivered their electrotherapeutic pulses to the patient's heart from the surface of the patient's chest. This is known as the transthoracic defibrillation problem. Second, external defibrillators must be able to be used on patients having a variety of physiological differences. External defibrillators have traditionally operated according to pulse amplitude and duration parameters that can be effective in all patients. This is known as the patient variability problem.
The prior art described above effectively models implantable defibrillators, however it does not fully address the transthoracic defibrillation problem nor the patient variability problem. In fact, these two limitations to external defibrillators are not fully appreciated by those in the art. For example, prior art disclosures of the use of truncated exponential monophasic or biphasic shock pulses in implantable or external defibrillators have provided little guidance for the design of an external defibrillator that will successfully defibrillate across a large, heterogeneous population of patients. In particular, an implantable defibrillator and an external defibrillator can deliver a shock pulse of similar
Brewer James E.
Olson Kenneth F.
Stendahl Gary B.
Getzow Scott M.
Patterson Thuente Skaar & Christensen P.A.
SurVivaLink Corporation
LandOfFree
Method and apparatus for delivering a biphasic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for delivering a biphasic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for delivering a biphasic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2921159