Method and apparatus for cooling electronic components

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S890030, C062S259200, C165S080400, C257S714000, C361S700000

Reexamination Certificate

active

06580609

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to cooling of electronic equipment, and more particularly to cooling electronics components.
BACKGROUND INFORMATION
Demand for higher performance supercomputers continues to create challenging thermal and packaging design environments for today's computer packaging engineers. As the performance of CRAY supercomputers continues to grow exponentially, in general agreement with Moore's law (Bar-Cohen, et al, 1988), the thermal and packaging solutions continue to become more complex.
The increase of supercomputer performance over the last 30 years was initially achieved with an increase in the complexity of the computer's CPU by increasing the number of ICs within a CPU. The next step in performance was achieved by adding more gates per IC along with increasing the clock rate. Performance was further increased by the paralleling of CPUs and then the scaling of groups of CPUs. Now in order to continue on the path of Moore's law, we are again pushing the IC technology and ultimately the performance of each individual CPU.
One technology that hasn't been able to keep pace with the ICs is the printed circuit board (PCB) technology. The demands for component placement and IC net routings have exceeded the current state of the art in PCB technology.
One solution to this problem implements a multi-chip module with thin film routing layers (MCM-D) for the packaging of these high performance chip sets. This high density packaging design is, however, capable of producing heat fluxes on the ICs and MCM that approach values of 50 and 15 W/cm
2
, respectively. The control of the IC's junction temperature is important for its reliability and for the performance of two communicating devices. The amount of induced leakage “noise” that exists on an integrated circuit is also a function of its temperature.
A number of cooling methodologies have been described by Bar-Cohen (Bar-Cohen, A., “Thermal Management of Electronic Components with Dielectric Liquids”, JSME International Journal, Series B, vol. 36, No1,1993), by Simons (Simons, R. E., “Bibliography of Heat Transfer in Electronic Equipment”, 1989, IBM Corporation), by Incropera (Incropera, F. P., “Convection Heat Transfer in Electronic Equipment Cooling”, Journal of Heat Transfer, Nov. 1988, Vol. 110/1097) and by Bergles (Bergles, A. E., “Liquid Cooling for Electronic Equipment”, International Symposium on Cooling Technology for Electronic Equipment, March 1987). Studies by Chu and Chrysler (Chu, R. C., and Chrysler, G. M., “Electronic Module Coolability Analysis”, EEP-Vol. 19-2, Advances in Electronic Packaging-1997 Volume 2, ASME 1997) and by Nakayama (Nakayama, W., “Liquid-Cooling of Electronic Equipment: Where Does It Offer Viable Solutions?”, EEP-Vol. 19-2, Advances in Electronic Packaging-1997 Volume 2, ASME 1997), however, indicate that these approaches are no longer capable of satisfying todays high density packaging requirements (Chu and Chrysler, 1997), (Nakayama, 1997).
As heat flux continues to increase, the most promising methods are those that utilize direct liquid cooling with dielectric fluids. Direct liquid cooling circumvents the problems of high thermal interface resistance associated with conventional technologies and is capable of providing very high heat transfer rates (Bar-Cohen, 1993). A number of such direct liquid cooling techniques are described in, “Thermal Management of Multichip Modules with Evaporative Spray Cooling,” by G. W. Pautsch and A. Bar-Cohen, published in ASME Advances in Electronic Packaging 1999, EEP-Vol.26-2, 1453-1463, the discussion of which is incorporated herein by reference. That paper concluded that the method of choice for cooling high heat flux electronic components is describe as “High Density, Pressure-Atomized Evaporative Spray Cooling”. This condition occurs when a fluid is sprayed on a surface at a rate that maintains a continuously wetted surface, whose temperature is less than 25° C. above the saturation temperature of the thermal coolant. This method, with the selection of an appropriate fluid, such as Fluorinert™ FC-72 which has a boiling point of 56° C. at standard atmospheric conditions, allows one to maintain high heat flux components at operating temperatures below 85° C.
Each of the above cooling approaches has its deficiencies. What is needed is a system and method for cooling electronics components that addresses these deficiencies.
SUMMARY OF THE INVENTION
To address the problems stated above, and to solve other problems which will become apparent in reading the specification and claims, a system and method for cooling electronic components is described herein.
In one embodiment, an enclosure is provided which includes a plurality of a first set of electronic components, cooling means for cooling a gas, and distribution means for directing the gas across the electronics components and the cooling means, where the distribution means forms a closed system limiting the transfer of the gas both into and out of the distribution means.
Several options for the enclosure are as follows. For instance, in one option, the cooling means includes a cooling coil and means for directing water through the cooling coil. In another option, the enclosure further includes means for spray evaporative cooling a second set of electronic components. In yet another option, the first set of electronic components are low power components and the second set of electronic components are high power components.
In yet another embodiment, a system includes a chassis including one or more modules with a plurality of electronic components, where the chassis forms a closed system therein. The system further includes a gas distribution member positioned within the chassis, where the gas distribution member is configured to direct a chilled gas toward the electronic components. A gas cooling device is positioned within the chassis, where the gas cooling device is configured to cool the gas after the gas has been heated by the electronic components.
Several options for the system are as follows. For instance, in one option, at least one of the modules includes a mechanical subsystem having multiple electronic modules and at least one fluid conditioning unit, and optionally at least one of the modules includes a spray evaporative cooling assembly. In yet another option, the gas cooling device includes a heat exchanger.
In another embodiment, a system includes a chassis including one or more modules with one or more electronic modules and at least one fluid conditioning unit, where at least one of the electronic modules includes at least one spray evaporative cooling assembly. The system further includes a gas distribution member positioned within the chassis, where the gas distribution member configured to direct a chilled gas toward the electronic components. The system further includes a gas cooling device positioned within the chassis, where the gas cooling device configured to cool the gas after the gas has been heated by the electronic components.
Several options for the system are as follows. For instance, in one option, the at least one spray evaporative cooling assembly and the at least one fluid conditioning unit form a closed system. In another option, the chassis forms a closed system therein. In yet another option, the at least one fluid conditioning unit includes at least one pump and a heat exchanger. The spray evaporative cooling assembly, in another option, includes a fluid charged with a non-corrosive, inert gas, for example Nitrogen.
A method of cooling an electronics enclosure is provided in another embodiment. The method includes forcing air over a first set of electronic components and cooling the first set of electronic components, heating a liquid to a temperature near its boiling point, directing the heated liquid against a second set of electronic components where at least portion of the heated liquid vaporizes, drawing the vapor and the heated liquid away from the electronics components, condensing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for cooling electronic components does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for cooling electronic components, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for cooling electronic components will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117210

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.