Electric lamp or space discharge component or device manufacturi – Apparatus
Reexamination Certificate
1999-03-17
2004-05-04
Maung, Nay (Department: 2684)
Electric lamp or space discharge component or device manufacturi
Apparatus
C455S443000, C455S444000
Reexamination Certificate
active
06729929
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is a method and apparatus that provides for the installation and setup of wireless networks.
Conventional Cellular Systems
Present day cellular mobile telephone systems provide for a large and increasing demand for mobile services. Cellular systems “reuse” frequency within a group of cells to provide wireless two-way radio frequency (RF) communication to large numbers of users. Each cell covers a small geographic area and collectively a group of adjacent cells covers a larger geographic region. Each cell has a fraction of the total amount of RF spectrum available to support cellular users. Cells are of different sizes (for example, macro-cell or micro-cell) and are generally fixed in capacity. The actual shapes and sizes of cells are complex functions of the terrain, the man-made environment, the quality of communication and the user capacity required. Cells are connected to each other via land lines or microwave links and to the public-switched telephone network (PSTN) through telephone switches that are adapted for mobile communication. The switches provide for the hand-off of users from cell to cell and thus typically from frequency to frequency as mobile users move between cells.
In conventional cellular systems, each cell has a base station with RF transmitters and RF receivers co-sited for transmitting and receiving communications to and from cellular users in the cell. The base station employs forward RF frequency bands (carriers) to transmit forward channel communications to users and employs reverse RF carriers to receive reverse channel communications from users in the cell.
The forward and reverse channel communications use separate frequency bands so that simultaneous transmissions in both directions are possible. This operation is referred to as frequency division duplex (FDD) signaling. In time division duplex (TDD) signaling, the forward and reverse channels take turns using the same frequency band.
The base station in addition to providing RF connectivity to users also provides connectivity to a Mobile Services Switching Center (MSC). In a typical cellular system, one or more MSCs will be used over the covered region. Each MSC can service a number of base stations and associated cells in the cellular system and supports switching operations for routing calls between other systems (such as the PSTN) and the cellular system or for routing calls within the cellular system.
Base stations are typically controlled from the MSC by means of a Base Station Controller (BSC). The BSC assigns RF carriers to support calls, coordinates the handoff of mobile users between base stations, and monitors and reports on the status of base stations. The number of base stations controlled by a single MSC depends upon the traffic at each base station, the cost of interconnection between the MSC and the base stations, the topology of the service area and other similar factors.
A handoff between base stations occurs, for example, when a mobile user travels from a first cell to an adjacent second cell. Handoffs also occur to relieve the load on a base station that has exhausted its traffic-carrying capacity or where poor quality communication is occurring. The handoff is a communication transfer for a particular user from the base station for the first cell to the base station for the second cell. During the handoff in conventional cellular systems, there may be a transfer period of time during which the forward and reverse communications to the mobile user are severed with the base station for the first cell and are not established with the second cell.
Conventional cellular implementations employ one of several techniques to reuse RF bandwidth from cell to cell over the cellular domain. The power received from a radio signal diminishes as the distance between transmitter and receiver increases. Conventional frequency reuse techniques rely upon power fading to implement reuse plans. In a frequency division multiple access (FDMA) system, a communications channel consists of an assigned particular frequency and bandwidth (carrier) for continuous transmission. If a carrier is in use in a given cell, it can only be reused in cells sufficiently separated from the given cell so that the reuse site signals do not significantly interfere with the carrier in the given cell. The determination of how far away reuse sites must be and of what constitutes significant interference are implementation-specific details. The cellular Advanced Mobile Phone System (AMPS) currently in use in the United States employs FDMA communications between base stations and mobile cellular telephones.
In time division multiple access (TDMA) systems, multiple channels are defined using the same carrier. The separate channels each transmit discontinuously in bursts which are timed so as not to interfere with the other channels on that carrier. Typically, TDMA implementations also employ FDMA techniques. Carriers are reused from cell to cell in an FDMA scheme, and on each carrier, several channels are defined using TDMA methods. The Global System for Mobile Communications (GSM), PCS1900, IS-136, and PDC standards are examples of TDMA methods in current use.
The present specification uses a GSM system for purposes of explanation but the present invention applies to any wireless system protocol.
GSM Cellular Systems
The GSM system architecture is described, for example, in detail by M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications, 1992 and Mouly and M.-B. Pautet, GSM Protocol Architecture: Radio Sub-system Signaling, IEEE 41st Vehicular Technology Conference, 1991. The following sections highlight some unique aspects of GSM systems.
The GSM system specifications incorporate many advanced services and features including:
ISDN compatibility based upon Q.931
World-wide roaming with other GSM networks
Two way messaging
Data Services
FAX Services
ISDN Supplementary Services.
However, the GSM system is designed fundamentally for use in a traditional Circuit Switched environment that uses 64 kbps voice and data transport.
GSM System Architecture
The standard GSM network includes three major components, namely, the Mobile Station (MS), Base Station Sub-System (BSS) and the Network Sub-System (NSS). The GSM Specifications define the network entities and their associated interfaces within the Public Land Mobile Network (PLMN). The complete suite of specifications also includes documents that define the type approval procedures for mobile stations allowing mobile stations to be used in different countries, independently of the country in which they were type approved.
Base Station Subsystem (BSS)
The Base Station Subsystem (BSS) is composed of two main parts, the Base Transceiver Station (BTS) and the Base Station Controller (BSC). The BTS includes the radio transceivers that define the radio cell boundary and handles the radio (Um) interface protocols with the mobile station. There are a number of different cell types, macro, micro and pico, that can be deployed dependent on the terrain, subscriber density and coverage requirements. The macro cell is intended for large cell sizes with ranges from 2 km to 70 km. The micro cell is intended to provide cell sizes from 100 m to 5 km, either as an in fill or in areas serving a high density of subscribers. The pico cells are intended to support cell sizes in the range 50 m to 1 km and will be used to provide high quality local radio coverage. The BTS supports all the required channel coding, encryption and speech coding required by the radio interface. The speech transcoding may be performed locally at the BTS or remotely at the BSC or MSC. If remote transcoding is used, then the BTS is still required to control this function.
The Base Station Controller (BSC) manages the radio resources of one or more BTSs across the Abis interface. The BSC controls most of the features of the radio network, including allocation of radio time slots to a mobile station, release of the resources, interpretation of measurement results and c
Cripps Peter Kendall
Long Paul Jan
Sayers Ian Leslie
Cisco Systems Inc.
Hamilton Brook Smith & Reynolds P.C.
Maung Nay
Orgad Edan
LandOfFree
Method and apparatus for controlling wireless networks does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for controlling wireless networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling wireless networks will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3214884