Illumination – Light fiber – rod – or pipe – With intensity control
Reexamination Certificate
1998-10-16
2001-10-02
Spyrou, Cassandra (Department: 2872)
Illumination
Light fiber, rod, or pipe
With intensity control
C362S551000, C362S554000, C362S556000, C362S558000, C362S581000, C362S035000, C385S031000, C385S039000, C250S221000
Reexamination Certificate
active
06296383
ABSTRACT:
FIELD OF THE ART
The invention relates to a method of controlling light as stated in the introductory portion of claim
1
, an apparatus as stated in the introductory portion of claim
11
and an optical plug as stated in the introductory portion of claim
20
.
In connection with so-called remote source lighting where one or more light sources are spaced from the location where the actual lighting is to take place, efficient conduction of light with a limited or controlled loss is required. Various types of light guide technology are used in this connection, which may be adapted to the task according to the current need. Examples of such applications include endoscopy, displays and lighting purposes in general.
As the light guide technology has gradually become economically attractive, the possible applications have increased correspondingly, and consequently applications of light guide optics for e.g. lighting purposes in particular have been found to be an interesting alternative to conventional technology.
It may e.g. be applications where a smaller number of central light sources can replace decentral light sources, whereby as an alternative to e.g. a large number of conventional bulbs or lighting units a smaller number of central lighting units will suffice, which may be less subjected to wear or vandalism, may be less exacting with respect to the design of the actual light source at the lighting location, and may be considerably easier to service.
These applications, however, have given rise to certain problems in connection with e.g. the flexibility of the overall system, as it is difficult to combine the mentioned advantages with requirements for an overall dynamic system. This should be taken to mean that the application of a large number of decentral light sources allows separate control of the individual light sources, as the individual light sources may e.g. be turned on, turned off and dimmed mutually independently, while the use of e.g. a single central light source, which provides a number of decentral lighting units via light guides, lacks this flexibility.
The object of the invention is to provide a central lighting system which eliminates these drawbacks and has the same possible uses as systems of decentral lighting units.
U.S. Pat. No. 5,434,756 discloses a lighting system which is particularly useful for cars. The lighting system comprises at least one central light source which is optically connected to a lighting system of a car via fibres. The light is emitted to the individual lighting locations and is controlled by means of a special type of optical switch, which, according to the invention, consists of a fibre input end and a fibre output end which are moved mutually in order to regulate the intensity of the transmitted light. However, this type of optical switch is supplemented with a mechanical sliding macroshutter in some cases. A drawback of this lighting system is that the actual control and adjustment of the individual optical fibres are relatively complicated, and moreover the lighting system does not permit central light control, because the light switch types used are inserted at various points in the optical network.
Movement of optical fibres is costly as a mechanism for each fibre is required.
U.S. Pat. No. 5,184,883 discloses a light control system of the kind adapted to control light distribution in automobiles. The disclosed system comprises a central light source optically coupled to a shutter via light guides. A drawback of the system is that the installing and maintenance is somewhat complicated and inconvenient in practice, as all shutter units must be located at each local lighting position. Thus, every installing of a light guide must be supplemented by a local mounting of a shutter unit and a control cable adapted to control the activation of the shutter. A further disadvantage is that the system is vulnerable with respect to wear or vandalism, and electrical control wires and local shutters will have to be encapsulated carefully.
SUMMARY OF THE INVENTION
When, as stated in claim
1
, the light is conducted from the central light source or sources to a control device comprising a plurality of electrically controlled microshutters, each of which having at least a closed state and an open state, from which the light is conducted further on to the lighting location or locations via one or more optical guides in the non-closed state of the microshutters, a central control of light from a central light source to a remote location is obtained.
Thus, it is apparent that various types of microshutters having mechanical diaphragms may be used within the scope of the invention, as the diaphragm characteristic as such is not decisive. For example, within the scope of the invention it is possible to use a diaphragm with several controllable shutter levels, so that the diaphragm itself provides control of the intensity of the light transmitted through the diaphragm.
A light emitter should be interpreted broadly, as a light emitter may also be a light guide, and as a result the method of the invention may thus be implemented at several levels. This means that the light may be subdivided centrally and then be conducted to the vicinity of the lighting location and be subjected to further subdivision or processing in more central positions, should this be deemed appropriate. The method may be implemented in several hierarchies so to speak.
The light sources may e.g. be high pressure mercury lamps, laser or light sources producing light of a specific colour or colour spectrum.
An example of a light guide may be a glass or plastics fibre guide which conducts light from fibre end to fibre end with a relatively small loss. Other guides, such as fluorescent tubes, in which part of the intensity of the light is dissipated to the surroundings between the end points, may likewise be used within the scope of the invention.
The method of the invention is thus in the nature of being a control of a central cross field for light, the light being conducted from the cross field via optical guides; the microshutters and optional lens system used in the cross field may be implemented by means of microtechnology.
Thus, the invention provides the possibility of minimizing optical losses, the possibility of making very use-specific and compact designs that may be put to use in very different fields, the possibility of graduating the injected intensity in each of the optical guides, the possibility of central control of the light distribution, the possibility of achieving a very high on/off ratio, the possibility of adding colour control to each individual light guide, the possibility of adapting or possibly changing each application by simple software adaptation, as the addressing and control of the individual microshutters take place purely electrically.
The method is particularly advantageous for the distribution of visible light.
When, as stated in claim
2
, the light is conducted from the central light source or sources to the microshutters of the control unit via a plurality of optical guides, a practical embodiment of the invention is achieved.
When, as stated in claim
3
, the light is conducted from the central light source or sources via precisely one optical guide, a simple and advantageous structure is achieved according to the invention.
When, as stated in claim
4
, light is conducted to at least one lighting location via a plurality of microshutters, the intensity of the light conducted to the lighting location being dependent on the number of opened microshutters, simple and controlled intensity regulation in the individual light guides on the output of the control unit is made possible.
Thus, the invention provides the possibility of both distributing the light as such and of controlling the intensity of individual distributed light signals.
When, as stated in claim
5
, the light is conducted to the lighting location from the control unit via precisely one optical guide, a simple and practical embodiment of the invention is achieved, with all the
Curtis Craig
Dicon A/S
Pitney Hardin Kipp & Szuch LLP
Spyrou Cassandra
LandOfFree
Method and apparatus for controlling light does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for controlling light, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling light will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2604026