Method and apparatus for controlling images with image...

Electric lamp and discharge devices: systems – Plural load device systems – Electric switch in the supply circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S316000, C315S294000, C315S292000, C315S312000

Reexamination Certificate

active

06812653

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to lighting systems, and more particularly to the control of images in a lighting system that includes multiparameter lights having an image projection lighting parameter.
2. Description of the Related Art
Lighting systems are formed typically by interconnecting many light fixtures by a communications system and providing for operator control from a central controller. Such lighting systems may contain multiparameter light fixtures, which illustratively are light fixtures having individually remotely adjustable parameters such as beam size, color, shape, angle, and other light characteristics. Multiparameter light fixtures are widely used in lighting industry because they facilitate significant reductions in overall lighting system size and permit dynamic changes to the final lighting effect. Applications and events in which multiparameter light fixtures are used to great advantage include showrooms, television lighting, stage lighting, architectural lighting, live concerts, and theme parks. Illustrative multi-parameter light devices are disclosed in the product brochure entitled “The High End Systems Product Line 2001” and are available from High End Systems, Inc. of Austin, Tex.
To program the multiparameter lights, the operator inputs to a keyboard of the lighting central controller (or central controller) to send commands over the communications system to vary the parameters of the lights. When the operator of the lighting central controller has set the parameters of the multiparameter lights to produce the desired effect, the operator has produced a “scene.” Each scene with its corresponding parameter values is then stored in the memory of the central controller for later recall by the operator or as an automated recall. As many as 100 or more scenes may be put together to make a “show”.
Prior to the advent of relatively small commercial digital controllers, remote control of light fixtures from a central controller was done with either a high voltage or low voltage current; see, e.g., U.S. Pat. No. 3,706,914, issued Dec. 19, 1972 to Van Buren, and U.S. Pat. No. 3,898,643, issued Aug. 5, 1975 to Ettlinger. With the widespread use of digital computers, digital serial communications has been adopted as a way to achieve remote control; see, e.g., U.S. Pat. No. 4,095,139, issued Jun. 13, 1978 to Symonds et al., and U.S. Pat. No. 4,697,227, issued Sep. 29, 1987 to Callahan.
A multiparameter light has several parameters that can be adjusted by remote control. A central controller is used in combination with a communication system to remotely control the multiparameter lights. Typically, the central controller is programmed in advance by an operator to control the lighting system. An example of a widely used central controller for multiparameter lights is the Whole Hog II, which is manufactured by Flying Pig Systems of 53 Northfield Road, London W13 9SY, and disclosed in a product brochure entitled “Whole Hog II, Lighting Control Workstation” available from Flying Pig Systems. Examples of some of the parameters that can be remotely controlled are position, color, pattern, iris, dimming, and shutter to name a few. Multiparameter lights can have over 12 parameters that are controlled by the central controller. Each multiparameter light can be set to respond to a specific address in the protocol used over the digital serial communication system. Typically the multiparameter light is first addressed by an operator of the central controller and next a parameter of the multiparameter light is adjusted from the central controller by the operator.
Multiparameter lights typically use metal or glass masks to act as a slide for the projection of an image. The metal or glass masks made for the lights are referred to in the industry as “gobos”. Typically a gobo is placed into the light path within the housing of the multiparameter light by a motor or other type of actuator. The actuator turns a wheel referred to as a “gobo wheel” that contains multiple apertures, and each aperture contains a gobo that can be placed into the light path. The actuator is controlled by the electronic system of the multiparameter light in response to commands received over the communication system from the central controller. Each gobo aperture in some multiparameter lights can rotate the gobo itself in the path of the light. Additional description of gobo technology can be found in my U.S. Pat. No. 5,402,326 entitled “Gobo holder for a lighting system,” which issued Mar. 28, 1995.
A type of advanced multiparameter light fixture which is referred to herein as an image projection lighting device (“IPLD”) uses a light valve to project images onto a stage or other projection surface. A light valve, which is also known as an image gate, is a device such as a digital micro-mirror (“DMD”) or a liquid crystal display (“LCD”) that forms the image that is projected. Other types of light valves are LCOS and MEMS. U.S. Pat. No. 6,057,958, issued May 2, 2000 to Hunt, discloses a pixel based gobo record control format for storing gobo images in the memory of a light fixture. The gobo images can be recalled and modified from commands sent by the control console. U.S. Pat. No. 5,829,868, issued Nov. 3, 1998 to Hutton, discloses storing video frames as cues locally in a lamp, and supplying them as directed to the image gate to produce animated and real-time imaging. A single frame can also be manipulated through processing to produce multiple variations. Alternatively, a video communication link can be employed to supply continuous video from a remote source.
U.S. Pat. No. 5,828,485, issued Oct. 27, 1998 to Hewlett, discloses the use of a camera with a DMD equipped lighting fixture for the purpose of following the shape of the performer and illuminating the performer using a shape that adaptively follows the performer's image. The camera acquiring the image preferably is located at the lamp illuminating the scene in order to avoid parallax. The image can be manually investigated at each lamp or downloaded to some central processor for this purpose. This results in a shadowless follow spot.
Since multiparameter light fixtures of the type that project an image using a gobo typically use gobo wheels to place various gobos into the light path, and since a gobo wheel typically has several positions, it is common for the central controller to display to the operator a position number of the gobo wheel on some type of visual display device. The visual display device may be a CRT monitor or LCD touch screen or the like. The gobo parameter selectively varied with the use of the gobo wheel of the prior art typically is referred to as the gobo parameter or gobo position parameter.
FIG. 1
shows a central controller
110
and multiparameter lighting devices
120
and
122
of the gobo type. A display device
150
, a keyboard
140
for entering control commands, and control input devices
145
are shown as part of the central controller
110
. A communications line
116
interconnects the central controller to the multiparameter lighting device
120
. Communications line
121
is connected between light
120
and light
122
so that light
122
can also receive communications from the central controller
110
. Only two multiparameter lighting devices are shown in
FIG. 1
although it is known in the art to interconnect
30
or more devices for larger shows.
Multiparameter lights
120
and
122
have several parameters that can be adjusted from the central controller
110
. For simplification, lights
120
and
122
are considered the same fixture type and include the following variable parameters: pan, tilt, color, gobo, gobo rotate, and intensity. The operator of the central controller sets the correct fixture type within the central controller software, and sets up the central controller to control the two lights
120
and
122
.
FIG. 2
shows a condensed version of a display screen
200
(analogous to the display device screen
150
of
FIG. 1
) for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for controlling images with image... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for controlling images with image..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling images with image... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3354057

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.