Method and apparatus for controlling conveyor

Electricity: motive power systems – Motor load – armature current or force control during...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S010000, C198S573000, C198S502100, C198S323000

Reexamination Certificate

active

06407523

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
The present invention relates to swarf collecting apparatus and methods and more specifically to a method of controlling a swarf collecting conveyor to clear swarf obstructions which cause excessive conveyor motor and drive component loading.
Many industries routinely employ lathes, drills, mills and other machinery having specially configured cutting bits to shape metal work pieces by removing metal “chips” therefrom. The chips which are removed come in many different shapes and sizes which are collectively referred to as swarf.
Many work piece shaping processes require a plurality of machines arranged at sequential work stations along a machine line. In these instances, after shaping at one station, a work piece is conveyed to a subsequent station for further shaping, each station generating swarf during the process.
To remove swarf from machine stations, often a conveyor belt is positioned below or adjacent a machine line to automatically catch flushed swarf and convey the swarf to a collection bin at the end of the belt. When the bin is full it is emptied or replaced with another bin. To facilitate use of large collection bins and thereby increase the time between emptying or replacement, most conveyors include a section which conveys upwardly at an inclined angle (e.g. 45 degrees) so that a belt end can be located above an elevated bin wall. To maintain swarf on the belt during inclined conveying (i.e. impede swarf from falling off lateral edges of the conveyor), a conveyor housing including a roof section is typically provided along the inclined section. Conveyor belts are particularly useful where the number of work stations and associated metal removing machines is large.
To cool work pieces and machine cutting tools and to flush swarf away from cutting bits during machining, a liquid coolant is typically dispersed at or near the cutting bits. In addition, swarf inside the bin or on the belt may be cooled by direct coolant dispersion thereon.
Swarf conveyor belts are typically driven by a motor capable of driving the belt in at least a forward direction. During machining, the belt is continuously driven to convey swarf from work stations.
Unfortunately swarf removing systems of the above kind can become obstructed by swarf during operation in at least two different ways. First, swarf can cause conveyor clogging. Only a certain swarf volume can pass though a conveyor housing at any time. Where swarf accumulates adjacent or within a housing, eventually, the accumulation can clog between the belt and housing impeding belt movement.
Second, swarf can become entangled between a belt and a stationary conveyor component (e.g. the housing) acting as a harness impeding belt movement. In this case, an elongated piece of swarf, typically a long corkscrew shaped shaving, can become ensnared at opposite ends between the belt and another component restricting belt movement.
In addition to damaging belt and other conveyor components, clogging and other forms of belt restriction caused by swarf (and or parts, bar ends, tools, etc.) increase motor load and, at some point, can damage motor components if the load becomes excessive.
One solution to belt obstructions has been to equip conveyors with manually operable motors capable of both forward and reverse operation. In this case, when swarf conditions cause motor overloading, an operator can stop the belt, reverse the belt, clear the obstruction and again restart the belt. Removing an obstruction is referred to herein as “clearing”.
Unfortunately, this solution to the problem has a number of shortcomings. First, this solution requires an operator to assist what is otherwise an automatic system for removing swarf from work stations. While the operator only needs to act after a clog or entanglement is detected, practically the operator must always be present to identify clogs and entanglements.
Second, where the time required to clear a belt is appreciable, an entire machine line may have to be shut down during the clearing process, further increasing costs associated with the system.
Third, if the obstruction is not noticed immediately, clogged swarf may cause belt, housing and/or motor damage prior to an operator stopping the belt.
Fourth, if the obstruction is not noticed immediately, swarf may accumulate upstream of the clog and fall from the belt. In addition, excessive cooling agent may be flushed into the belt system generally causing a mess or overflowing onto the floor.
Fifth, where the obstruction occurs inside the housing, it may be difficult for an operator to identify the obstruction until swarf backs up to the mouth of the housing.
Another solution for removing swarf obstructions is to provide an automatic clutch on the motor which allows the shaft which drives the belt to slip when motor load becomes excessive. In this case, instead of damaging motor and conveyor components, a clutch allows the motor to operate with a safe load and the belt stops until an operator can perform a clearing process to remove the obstruction.
While this solution reduces the possibility of motor and conveyor component damage, it to is encumbered with shortcomings. For example, this solution still requires an operator to be present to clear every obstruction that occurs. In addition, when the belt is stopped due to overloading, either the entire machine line must be shut down or swarf will continue to accumulate on the belt. Shutting down the entire line is costly. However, swarf accumulation can eventually exceed belt receiving capacity with excess swarf falling off the belt onto a floor surface. This is especially dangerous when swarf is extremely hot as is often the case with metal shavings or the like.
Moreover, as swarf accumulates on a stationary belt during clearing, the accumulated swarf causes conditions which will likely lead to further obstruction once the belt is again running in the forward direction.
One solution to the swarf jamming problem is described in U.S. patent application Ser. No. 09/081,538 entitled “Method and Apparatus for Controlling Conveyor” filed on May 19, 1998. That application teaches a system wherein conveyor motor load is sensed and, when the load exceeds a predetermined load likely to correspond to a jam, the conveyor is stepped through a jam clearing process a specific number of times, the process and number of times calculated to likely clear the jam. For example, the clearing process may be to reverse the conveyor motor a given number of turns and then, once again, drive the motor in the forward direction. In the alternative the clearing process may be to reverse the conveyor until the conveyor has traveled in the reverse direction a specific distance and then, once again, drive the conveyor in the forward direction.
While this solution including counting the number of clearing processes is much better than prior solutions, under certain circumstances even this solution can be insufficient to protect the motor and conveyor components. For example, where each clearing process includes reversing the conveyor motor until a clearing process milestone is achieved prior to driving the motor in the forward direction, the milestone may never be reached if the jam also prohibits reverse conveyor travel. For example, where a clearing process requires 10 motor rotations prior to again driving the motor in the forward direction, if a jam impedes reverse conveyor travel, the 10 rotations are never achieved and the motor may either be damaged or destroyed. Similarly, if the milestone is a specific conveyor reverse travel distance, the reverse distance will never be achieved if reverse motion is impeded.
Moreover, even where a jam does not prohibit reverse motion, the jam may impede reverse motion such that reverse motion is slowed to the point where excessive load is placed on the motor.
In addition, even with a single machining process swarf characteristics m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for controlling conveyor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for controlling conveyor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling conveyor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2941273

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.